Stock Price Prediction with Sequential Models

Yuanhang Luo
Department of Computer Science
Stanford University
royluo@stanford.edu

Abstract

This is a deep learning project on predicting stock market prices using neural
sequential models, including RNN and Transformers. The dataset we use are stock
price data including open price, high price, low price, close price, and volume
traded on each day. We aim to predict the stock price of the next day using data
from previous days, with nested sliding window to prepare the training and testing
data. Experiements show that LSTM performs well on the task and outperforms
Transformer.

1 Introduction

Stock prices are always changing, and it has been a very interesting problem to predict the stock
prices based on available information. If we were able to predict changes of stock prices successfully
for more than half of the time, we will be making well-informed decisions on investment and trading.

There are many factors that are influencing stock prices in the market, and many of them cannot be
quantified or easily obtainable. However, historical prices and trading volumes do provide some
information in deciding the future prices. Therefore, in this project, we aim to use neural network
models to predict stock prices using history stock prices and trading volumes.

2 Related work

There are several areas of related works: traditional statistical methods and machine learning (espe-
cially neural network) methods.

Ariyo et al. [1] uses autoregressive integrated moving average (ARIMA) models to predict stock
prices. ARIMA models are efficient and robust when it comes to short-term time series prediction
especially in the finance field. Lee et al.[2] and Merh et al.[3] compared the performance of neural
network models and ARIMA models.

As for the neural network side of researches, Lu et al. [4] proposes a CNN-BiLSTM-AM model ,
combining Convolutional Neural Networks, Bidirectional Long Short-Term Memory, and Attention
Mechanism to predict stock prices. It shows the power of how modern and complex neural networks
can be applied on stock price prediction tasks. Selvin et al.[5] proposes a model independent approach
to find the latent dynamics underneath the stock prices instead of simply predicting the future stock
prices. Sonkiya et al. [6] proposes a model using BERT and GAN. It utilizes features including news,
technical indicators, and historical prices. It is using ensemble methods with high performance.

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3 Dataset and Features

3.1 Dataset

The dataset we are using is Google stock prices from 2012 Jan 3 to 2021 Dec 30. The dataset is
downloaded from Yahoo Finance[7].

Each data entry has information of a day when stocks are actively being traded. Since there are dates
that stock is not being traded, there are 2,516 rows in the dataset, instead of 3,650 rows.

For each row (each trading day), there are five features: open price, high price, low price, close price,
and volume. The feature names are self-explanatory. We will be using these features to predict the
close price of the next day.

Below is a figure of the close price in the dataset.

Google Stock Price

200

8
8

1500

Close Price (USD)

1000

Date

3.2 Preprocessing

Nested Sliding Window We use nested sliding window method to process dataset into training and
testing dataset. For the entire dataset, we first use a big sliding window to select 5 passes of windowed
datasets from it. Then for each pass of the big window, we use sliding window method to convert
data into our desired format, and set the 80%:20% training and testing split. Below is a illustration of
the nested sliding window.

Time Present
>

Pass 1 |
Pass 3 [

Pass 4 I |

Pass 5 [

Pass 2

Wi J wiie Ll "

Dropped - Training Forecasting

For each pass of dataset, first we define the length of the history data in the past to predict the next

day price. This length called seq_length is used as the size of the window to slide over the historical
data.

Then we select the previous seq_length days of the historical price and volume data, and the
corresponding label of this window of data will be the close price of the next day. For example,
seq_length is 10. Then day O - day 9’s prices and volume will be the features, and the close price on
day 10 will be the label.

To avoid data leakage, sliding window will be applied to the training and testing set respectively after
the dataset split.

Scaling The magnitudes of the prices and volume are very different. Prices range from several
hundred to a few thousand. While the trading volume range from many thousand to over 20 million.
Considering the large difference in these values, we use two methods for scaling the data. The scaling
is separate for prices and volumes.

Min Max Scaling We choose min and max value for the prices data, and scale the prices based on
this pair of min and max value. Then we choose a different pair of min and max value for the volume
data, and scale the volume based on this pair.

The formula we use for min-max scale is
2(X — Xpmin)

X, = -1
scaled Xmax — szn
Standardization We standardize the data into O mean and 1 standard deviation. The formula is:
X-X
Xscaled — #

To avoid data leakage, we only use the training set data to determine the min and max values. Then
we scale the test data based on the training set min and max values.

4 Methods

4.1 Models
4.1.1 Long Short-Term Memory

Model Architecture One model we use is a Long short-term memory (LSTM) network [8]. LSTM
network is a Recurrent Neural Network (RNN) capable of learning long term dependencies through
forget gate, input gate, output gate, and cell state.

To increase the complexity of the LSTM network, we might stack L layers of LSTM together, so the

hidden states of the cells in the previous layer hT(f ~Y serve as the input to the corresponding cells in

the next layer th).

The input of the model are the sliding windows of historical prices and volume, with the feature
dimension of 5. The output of the model is the predicted close price of the next day. We consider the
output state of the final LSTM cell hSLe q_lengtn, as the prediction result, so its dimension is 1. The

length of the LSTM sequence is the seq_length we defined for the sliding window.

4.1.2 Transformer

Model Architecture Another model we use is a transformer network[9]. It is made up of positional
encoding, embedding layers, and self-attention.

Transformer is very different from traditional Recurrent Neural Network models, because it is
disregarding the time / order information in a sequence. Instead, "attention is all you need". The
sequence is processed as a whole rather than sequentially as in regular RNN models.

Considering the fact that stock prices data relies very heavily on time, it will be impossible to ignore
the valuable information. Therefore, we need positional encoding to encode the time information. It
helps assign a value P, ; to a particular data v, given its position k in the sequence. More specifically,
it is defined as

P(k,2i) = sin(%)

Table 1: RMSE

Pass Number Training LSTM Training LSTM Training Transformer Testing Transformer

Ist 7.28 9.57 88.89 37.22
2nd 9.67 8.24 46.10 72.07
3rd 10.22 20.24 53.64 177.25
4th 15.75 42.07 46.64 123.78
Sth 26.19 82.11 120.04 423.26

P(k,2i+1) = COS(%)

where d is the embedding dimension, and n is a scalar.

The inputs of the model are sliding windows of historical prices and volume, and the outputs are the
corresponding close prices.

4.2 Loss Function

The nature of the task is a regression task, so the loss function is Mean Squared Error (MSE) between
the predicted and true value.

MSE = mean(lh ey lN)y ln = (ypredicted - ytrue)2

5 Experiments/Results/Discussion

5.1 Evaluation Metrics

Given that the task is a regression task, we use Root Mean Squared Error (RMSE) to evaluate our
results on training and testing sets.

5.2 Experiments and Results

We have run several experiments on testing performances between LSTM and Transformer models.
Here are some results.

Generally, from tablel, we can see a trend of increasing training and testing RMSE in both models.
This might be due to the high variance of the dataset. As we see, the stock prices become more and
more volatile and have higher and higher variance as time goes on from 2012. Therefore, it is more
and more difficult for the model to learn enough information to make a powerful prediction of the
future.

To mitigate this, we can make the model to predict less far in the future due to the possible different
distribution of past data and future data. We might also need more data, and increase the complexity
of the model.

Another difference lies between the performance of LSTM and Transformer model. LSTM is
performing better than Transformer in many experiments, as seen from the following graph. This
might be due to the lack of long term dependencies between the data. It could also be due to the fact
that the information is not fitting in well into this Transformer model and we need to investigate more
about how we can best fit the Transformer model with time-series data.

1500

1400

1300

Cost (USD)

=]
15
8

Stock price

~— Data

i

o = W\ J
"\

200

Stock price

— Data
Testing Prediction

W -

1100

Days Days

LSTM vs Transformer prediction

5.3 Discussion

There are several things insightful about this project. One of them is the high variance of data and its
impacts. Stock prices have been very volatile, and in our dataset, it can be seen especially after 2018.
The trend and patterns become very different from the data before. Therefore, it is inevitable that the
prediction of stock prices is a very difficult task - it is very difficult for neural networks to learn from
the data with very different patterns in the past and make predictions about the future.

Another thing is the many factors that are influencing stock prices. Past stock prices and trading
volumes do carry much information, but there are also lots of other factors that are influencing the
stock market. Those factors are not included in the dataset, and they are making really huge impacts
on the stock prices.

Additionally, it is interesting to see that LSTM is outperforming Transformer in the experiment
settings of this project. Even though we did some results analysis on this, it will still be interesting to
see how stock prices can be better predicted using Transformer models to outperform LSTM models.

6 Conclusion/Future Work

In this project, we have explored various sequential models for the task of stock price prediction. So
far as we explored, Transformers are not outperforming LSTM for this task. However, there are many
aspects that might be limiting the performance of Transformers in this project, including the lack of
long term dependencies between data, lack of dataset, and lack of model complexity and training
power.

In future, it is interesting to explore more into how time series stock price data can be applied on
Transformer models. One direction will be the positional encoding. There could be better ways to
represent time information in time series data, different from the current prevalent positional encoding
method used in natural language processing. Another direction could be investigating how the data
and the model can be fit together better. For example, feature dimensions, sequence length, input and
output formats, etc.

Moreover, it will be interesting to see how we could incorporate other information into the stock
price prediction model. One interesting direction will be including news into the prediction model,
because it is influencing human belief and decisions.

7 Contributions

Yuanhang Luo contributed entirely to the whole project.

References

[1] Adebiyi A. Ariyo, Adewumi O. Adewumi, and Charles K. Ayo. Stock price prediction using the
arima model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and
Simulation, pages 106112, 2014.

[2] Kyung Joo Lee, Sehwan Yoo, and John Jongdae Jin. Neural network model vs. sarima model in
forecasting korean stock price index (kospi). 2007.

[3] Nitin Merh, Vinod Prakash Saxena, and Kamal Raj Pardasani. A comparison between hybrid
approaches of ann and arima for indian stock trend forecasting. 2010.

[4] Wenjie Lu, Jiazheng Li, Jingyang Wang, and Lele Qin. A cnn-bilstm-am method for stock price
prediction. Neural Computing and Applications, 33:1-13, 05 2021.

[5] Sreelekshmy Selvin, R Vinayakumar, E. A Gopalakrishnan, Vijay Krishna Menon, and K. P.
Soman. Stock price prediction using Istm, rnn and cnn-sliding window model. In 2017 Inter-
national Conference on Advances in Computing, Communications and Informatics (ICACCI),

pages 1643-1647, 2017.

[6] Priyank Sonkiya, Vikas Bajpai, and Anukriti Bansal. Stock price prediction using bert and gan,
2021.

[7] Yahoo Finance. Goog stock prices. https://finance.yahoo.com/quote/G0O0G/history.
Accessed: 2022-05-01.

[8] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

