Beats by Dr.A.I.- An Experiment in Deep Learning
Lyric Generation

Tracy Cai Wilson Liang
Department of Computer Science Department of Computer Science
Stanford University Stanford University

cpcai@stanford.edu liangwil@stanford.edu

Donte Townes
Department of Computer Science
Stanford University
townes(01@stanford.edu

Abstract

The traditional songwriting process is rather complex and this is evident in the time
it takes to produce lyrics that fit the genre and form comprehensive verses. Our
prject aims to simplify this process with deep learning techniques, thus optimizing
the songwriting process and enabling an artist to hit their target audience by staying
in genre. Using a dataset of 18,000 songs off Spotify, we developed a unqiue
preprocessing format using tokens to parse lyrics into individual verses. These
results were used to train a baseline pretrained seq2seq model us, and a LSTM-
based neural network models according to song genres. We found that generation
yielded higher recall (ROUGE) in the baseline model, but similar precision (BLEU)
for both models. Qualitatively, we found that many of the lyrical phrases generated
by the original model were still comprehensible and discernible between which
genres they fit into, despite not necessarily being the exact the same as the true
lyrics. Overall, our results yielded that lyric generation can reasonably be sped up
to produce genre-based lyrics and aid in hastening the songwriting process.

1 Introduction

For many people in the music industry, crafting lyrics can be a difficult feat, especially when
attempting to fit within the expected tone of a genre. When writing lyrics the inappropriate diction or
lack of rhyming and flow can negatively impact the popularity of the music for the targeted audience.
It can also be noted that during the songwriting process the lack of ideas when starting to write lyrics
for a song can make the songwriting process longer and zap an artist of their creative flow.

This project was deployed with the intention to aid in the crafting of song lyrics based upon an
identified genre. The usage of our model would help to form ideas or lyrical motifs that tend to fit
a genre in a quicker manner than traditional lyric generation, thus easing the songwriting process
for many musical artists and further optimizing the songwriting process. Our interest was in seeing
how relevant, recognizable, and lyrically sensible our model could be in producing 100-word lyrical
measures from a dataset of Spotify songs with their lyrics. In this report, we shall review the multiple
generative models we evaluated mainly being models framed after RNNs with LSTM layers, pre-
trained gcp2 models, and other models found on GitHub. Knowing that we are using a generative
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model, we expect to have non-deterministic outputs of lyrics in each trial, but have tested output
samples against metrics for text similarity for pairs of sequential phrases on 2 different metrics,

ROUGEI-R and BLEUM.

Our algorithm simply takes in a short phrase or word and using our LSTM model trained on the
the Spotify dataset, we output a 100 character phrase or set of phrases dependent on the model’s
interpretation. The output is currently set to a .csv file.

2 Related work

2.1 High-Level LSTM Research

Regarding related projects, we have observed a similar project in CS230 by A. Apellanes and J.
Wagner!! who used transfer learning on an LSTM RNN. Some strengths in this project seems to be
their use of transfer learning from a model pre-trained model of 200 Kanye West songs. The authors
expanded the model to take 4000 songs while keeping the initial model weights. Uniquely, they made
use of a mean squared loss function over Cross Entropy like most translation models seen. The most
unique part of this project seemed to be the use of a thyme index, where suffixes of generated words
are used during post-processing to ensure their generated lines matched the rhyme scheme with their
datatset. This seems to be a weakness when it comes to coherence of generated lines and flexibility.
Other methods employed seemed to be the use of hyperparameter tuning with the panda process,
restriction of syllables allowed per generated line, and usage of Rho to combat noisy gradient descent.
This project is very similar to our own, albeit limited to generating lyrics to rap songs. Their model
using LSTM seems to agree with our general model research like with the high-level T5 model from
HuggingFace['¥), however we deviate in the idea of using transfer learning as we wished to train our
own weights and specialize our model.

2.2 Pre-Processing Adaptations

We saw that pre-processing of the training data seemed to be vital in how the text would be grouped
and likely arranged by the model, thus projects like that proposed by M. Sidorov['?! had strengths in
using a labeling system embedded into the training data. Other pre-processing techniques like the
use of a syllabic indexing, encoding by word, and encoding by character yielded distinct results that
affected coherency of generated sentences. The best approach seemed to be the use of tokens.

2.3 Model Architectural Adaptations

The overall research we did seemed to come to a consensus that lyric generation would have an
architecture using LSTM cells, categorical crossentropy loss, and Adam optimization. However,
some modifications based on non-text LSTM generation projects like that of Z. Chen!®! et al. used
RMS Prop as the optimizer as well as a Bidirectional LSTM layer at the model’s start to expedite
training loss which was successful for their project. Other models like the non-text music generation
model from K. Chou and R. Peng!®, use a standard 3-layer LSTM model but also during passing of
the data to the fully-connected layers, a batch norm and 2 linear layers are added to produce a vector
the name size as their input vector. They additionally use batch norm and ReL.U activation between
linear layers. Cross entropy loss is used, but so is a stochastic gradient descent optimizer'?. It is
with this information that we wished to investigate the best optimizer to use as approaches to this
commonly diverged.

3 Dataset and Features

The dataset we are using is a Kaggle dataset, “Audio Features and Lyrics of Spotify Songs”, featuring
18,000 songs from Spotify[*!]. Our dataset is 44MB and has features including song lyrics, song title,
artist name, playlist genre, track popularity, the language of the lyrics, and other audio features of
the tract like danceability, loudness, energy, etc. The dataset needed little cleaning besides filtering
out only songs that had English lyrics. This left us with 15405 usable songs in our dataset. Upon
further analysis, of the “playlist genre” of our song set, we saw that our dataset was rather evenly
distributed by “playlist genre”, but some relative outliers were the genres of “pop”, which contains



the highest number of songs at 3739 songs, and the genres with the least songs being “latin” and
“edm” with 857 and 1758 songs, respectively. The average number of songs per genre is 2568.
We preprocess our data by creating a corpus of
all words found in the lyrics of our dataset and

enumerating the unique words for the model e

to use. We did not explicitly divide our data 3500
into training, dev, and test sets because of the
nature of a generative model. We split the lyrics 3000
of a song by verses (based on capitalization) 2500
and added a verse token '<V>’ to indicate the .
delimiter. = 200
Lyrics Example Before Pre-processing: 1500
1000
When darkness falls, may it be That we 500
should see the light When reaper calls, 0

may it be That we walk straight and right
When doubt returns, may it be That faith
shall permeate our scars ...

pop rock r&b rap edm latin
playlist_genre

Figure 1: Genre Breakdown of Dataset
Post-Processing

["When darkness falls, may it be <V> That we should see the light <V> When reaper calls,
may it be <V> That we walk straight and right <V> When doubt returns, may it be <V> That
faith shall permeate our scars <V> ...

Then we encode each word with a one-hot encoding according to a vocab dictionary created from the
corpus!®. The encoded verses are the main features we will use to train our set to generate lyrics and
the expected result would be the immediate lyrics that follow.

4 Methods

Our method was to develop 2 general models, an initial baseline model to get a generalization of
what we may expect to output from a high-level, LSTM-based architecture and a custom model using
PyTorch that would present a lower-level, LSTM architecture.

4.1 Baseline Model

The baseline model consists of a pre-trained, sequence-to-sequence model (seq2seq) from Hugging
Face 19, specifically their AutoModelForSeq2SeqLLM. This is a generic model class instantiated as a
t5-small model with a sequence-to-sequence language modeling head. TS, specifically, is an encoder-
decoder model which requires an input sequence and target sequence. It is trained using teacher
forcing. Teacher forcing is a method for quickly and efficiently training recurrent neural network
models that use the ground truth from a prior time step as input, thus previous data iterations use
their subsequent counterpart to train on. We applied the T5 tokenizer (based on Google’s unofficial
SentencePiece tokenizer) to encode our data sets of verse sequences along with verse tokens. The
baseline model also utilizes cross entropy loss in the model as this is standard for most language
models. Its activation function is a softmax cross-entropy loss with masks. We trained our baseline
model with a training set of 681,442 english song entries and used a validation set with 170,360
entries. We then tested our model on 200 pairs of lyrical phrases. For our optimizer metric, we used
an evaluation of the predicted and actual lyrics with Jaccard similarity.
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4.2 Final Model

Il

For this model, we implemented a LSTM model using PyTorch which takes in prior sequential data
to predict the next value. For each layer in the LSTM computes the following function on every
element in the input sequence :

it = o(Wiize + bii + Whihy—1 + bni)

fl = O'(W,'fl‘l + b,‘f -+ W/,fh,,l + b],f)

gt = tallh(Wiyw, + bi_q + VV;,gh,,l + b},g)
Oy = U(Wioml + bio + W/whlfl + bhu)
¢=fi0c 1+ 0g

hy = o; ® tanh(¢;)

We passed in our encoded lyrics using a sliding window approach with a sequence length of 4 (i.e
given a 4-word sequence, the model predicts the next word). The sequence length of 4 was chosen to
allow the model to learn from past words beyond the immediate previous word, but not too long as to
impact training speed. The first layer of the model is the embedding layer, initialized according to
our corpus vocab size. Next, we add three stacked LSTM layers, with input dimensions and hidden
units set to 128 and a dropout rate of .2 for each layer. Finally we connect it to fully connected layer
which outputs word vectors in dimensions according to the vocab size. We chose to stick with using
Cross-Entropy Loss as our loss function as this was the standard consensus when investigating LSTM
translation models. Cross-Entropy Loss in this case is used from pyTorch and specifically follows the
formula without use of label smoothing, nor reduction:
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Unlike our baseline model, however, we chose to use Adam!®) as a replacement optimizer for gradient
descent as it tends to be efficient with large problems that utilize a lot of datal'”). The Adam optimizer
does not require a large space, nor does it need a lot of memory which helps us stay efficient in our
gradient descent. With our main model completed, we trained several new instances of this model
using a subset of our data to produce three genre-based models: rock, pop, r&b. Training each new
model according to a specific genre would allow us to compare the effectiveness of specializing data
compared to the larger model using all English songs from our dataset. Formulas for ROUGE and
BLEU metrics are seen in figure 3 (appendix).

5 Experiments/Results/Discussion

5.1 Hyperparameter Tuning and Alterations

After initial training of our baseline, we saw that we often had a very low accuracy, specifically, the
average Jaccard similarity of the 200 prediction was 0.07743339232 with the best evaluation having
a similarity of 0.8125. We ran 3 epochs on our baseline model, however and assumed that we would
get better results with tweaks other model aspects, however, due to time-constraints, we could not
investigate further hyperparameter tuning except to change the number of epochs to 2. This did
appear to yield better results and less repetitions, nevertheless. We focused most on modifying the
tokenizer section of preprocessing as an independent variable. With different tokenizing schemes we
deduced that we would get more comprehensible output by ensuring lines were properly split as well
as punctuation and capitalization. This seemed to hold true as the form of our data returned clear, and
notably similar to the form one would observe in lyrics.



5.2 Quantitative Results

We evaluated our models on two metrics, ROUGE1-R and BLEU. We can see the results below:

Baseline Model Metrics Original Model Metrics
Metric Pop R&B Rock Metric Pop R&B Rock
BLEU  1.68e-227 1.22e-227 9.63e-228 BLEU  2.17e-229 191e-229 2.21e-229
ROUGE  2073.89 1235.07 1009.04 ROUGE 19.95 20.58 20.11

We can see that we had much higher ROUGE scores in our baseline, indicating a higher recall or how
often training words appear in the model output, with the Pop model having the highest score of all.
The original model has rather similar ROUGE scores leading us to interpret that we may have more
originality in the original model than the baseline, but relatively even rates between genres. For the
BLEU metric, the baseline model seemed to score higher overall compared to our original model.
This, however, leads us to believe that we have more precision in the baseline and there are more, but
still few, words that appear in the model that appear in the training set. In turn, we had comparable
BLEU scores over all genre models for the original model we made. This is an odd result, as with n
grams trained with words, both scores should be high if comparing with the training set.

5.3 Qualitative Results

Below are some outputs from our original model that are noted to be highly comprehensible. We
took note of punctuation being rather well-placed and even assessed by opinion the likeliness of each
lyrical phrase to be used in a song of their respective genre.

Original model sample predictions:

Some R&B Samples: Some Pop Samples:

Can we take it to the next level, baby, do you dare? You take me down, spin me around

Thinking of the fear i’ve had for so long You promised me you’d be around

Baby girl, we can do all the thangs you want to do

I walk a little faster in the school hallway

I never knew there was a love like this before

What else can we do when we’re feelin’ low?

I know you moved onto someone new

Lights fill the streets, spreading so much cheer

Some Rock Samples:

Love, like a road that never ends
How’ve you been, have you changed your style?
Trying to forget but i won’t let go
I’ve been waiting for you
The radio station plays his latest song

6 Conclusion/Future Work

Overall, we were successful in creating a rather simplistic LSTM model to generate song lyrics
using a 3 layer LSTM model with Cross Entropy Loss, Adam optimization, and only 3 epochs of
training. A large amount of our project focused on the best preprocessing technique to achieve a
comprehensive output. However further implementations have been proposed to optimize the model
and training. Some things that remain to be tested are hyperparameter tuning methods like creating
multiple models where we change the batch size, number of LSTMs in a layer, number of layers,
and perhaps type of layers. Another adaptation would be during evaluation. By feeding our model’s
output into a song genre classification model, we could assess what outputs are more fitting to their
genre over others and tweak our model’s weights according to what produces lyrics with the best
mean fit. Finally, we could also tweak our preprocessing method by dividing our corpus by syllables
or phonetics to achieve rhyme and rhythmic outputs.

7 Contributions

Donte Townes: worked on writeups and video presentation.
Wilson Liang: worked on coding the original model and helped with the writeup.



Tracy Cai: worked on coding the baseline model and ran experiments for both the baseline and
original model.

8 Appendix

8.1 Additional Figures

input : v (Ir), 81, B2 (betas), 6y (params), f(6) (objective)
A (weight decay), amsgrad, mazimize

—~mazr

initialize : mg < 0 ( first moment), vy < 0 (second moment), 75"** < 0

fort=1to ... do
if mazimize :
gt < —Vofi(6i-1)
else
gt < vﬂf!(gl—l)
ifA#0
gt < g + A
my < Prmy—1 + (1 — B1)ge
v — Bovi 1+ (1 - Ba)g}
my < m,/(l - Bi)
T v/ (1 - B3)
if amsgrad
;" max (7", 7y)
0 — 61 — ‘/77Tt/( v+ 6)
else
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return 6;
Figure 2: Adam Optimizer Formula
BLEU = BP % e.rp(z wilog(pr))
k=
countmalch(gramn) !
__min(1— I‘i:(r"{';;:';) ,0)
count(gram ) HE = e
(a) label 1 (b) label 2

Figure 3: ROUGE Formula (left), BLEU formula (right)
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