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1 Introduction

Disorders of the voice are referred to as dysphonia and can be categorized into two groups - hyper-
kinetic and hypokinetic. In hyperkinetic disorders, phonation becomes forceful and exaggerated
with sphincter action similar to gagging. Excessive muscular action and a tightened larynx lead to a
grating sound. In hypokinetic disorders phonation instead becomes subdued and the larynx is largely
sluggish leading to huskiness or a breathless sound. Reflux laryngitis is another voice disorder that is
caused by back flow of stomach acid to the throat. Up to 9% of Americans may have voice disorders,
however only around 1% seek treatment. Thus, it is important to investigate ways to quickly screen
for vocal fold pathologies.

In this project, we implement different models that take in Mel-Frequency Coefficients (MFCCs) or
spectrograms processed from the audio signal data. MFCCs typically represent phonemes and are
frequently used in voice recognition. These types of data show how the frequencies of sound vary
over time while reducing the large amount of noise present in audio data. The input of our algorithm
will be MFCC and spectrogram data. We use deep learning models to predict the voice pathology.

2 Dataset and Features

We use data from the VOICED database [1], which contains 208 voice samples from patients with
different voice pathologies. For each patient, the vocalization of the vowel “a” was recorded for
approximately five seconds with a constant voice intensity. Recordings were sampled at 8000 Hz with
32-bit resolution. The vocalizations were performed in a carefully controlled environment, accounting
for variables such as background noise, humidity, and measurement device. The pathology of each
voice was described and verified by medical experts as healthy, hyperkinetic dysphonia, hyperkinetic
dysphonia, or reflux laryngitis. There are 72 voices with hyperkinetic dysphonia, 57 voices associated
that are healthy, 41 voices with hypokinetic dysphonia, and 38 voices with reflux laryngitis.

We processed the audio signal of each subject into Mel-frequency cepstral coefficients (MFCCs).
MFCCs are features extracted from audio signals commonly used in audio and voice tasks. The
coefficients are calculated by separating the signal into windows of a designated size and stride,
both in terms of the number of samples. The log of the discrete Fourier transform is applied to each
window to compute the logarithmic power spectrum. MFCCs are obtained by conducting mel-scaled
filter bank analysis and applying discrete cosine transform (DCT) for each window [8]. We rely on
the LIBROSA package in Python to compute the MFCCs and spectrogram for each recording. Signals
were padded from the left to keep the dimensions consistent between samples. Padding zeros from
the left preserves the integrity of the signal, which is O at the beginning of all recordings. A example
is shown in Figure 1.

We aim to predict voice pathology of patients given their audio data and other features. The dataset is
split in 60/40 train/dev set. Nishant uses the dev set as a test set due to small sample size, and Louie
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Figure 1: Different representations of the audio data for voice ID 001

further splits the dev set into 50/50 validation/test set (so 60/20/20 overall split). The data consists
of 124 train and 84 dev observations. It is a valid concern that a validation set of 42 observations
is not enough to assess the validation loss robustly. Several data augmentation strategies were also
utilized whenever possible. The samples were time-shifted 5 times to allow the model to better
generalize by adjusting the left zero-padding of the signal during the initial stages of the recording
(the recording starts before the voice, and the voice is cut off abruptly at the end of the recording).
The initial half-second of every of every 4-second recording was silence. The shifting resulted in
this moving to different locations in a uniform distribution. Certain models, such as VGGish [6] and
YAMNET [7], slice the mel spectrogram into 0.96s duration with 50% overlap to increase the number
of observations.

3 Methods

We train models to predict the voice pathology of patients using MFCCs provided from the recordings.
As there are four possible diagnoses (healthy, hyperkinetic dysphonia, hyperkinetic dysphonia, or
reflux laryngitis), this is a multi-classification problem. Thus, we use the categorical cross-entropy
loss function as follows (for one sample):

C
L(y,9)=—_ yelogye. (1)
c=1

Note that C' is the number of classes, y. is the output label for class ¢, and g is the probability assigned
to class ¢ by the model. This loss function tries to maximize the probability of the ground truth label
in each training example.

Due to the small number of samples in the VOICED database, we try a variety of models for transfer
learning: VGGish, ResNet50, and YAMNET. These models were used as feature extractors. We
freeze the pretrained weights in these networks to create embeddings for the input audio. VGGish is a
model released by the Google Sound Understanding team that outputs 1x128 dimensional embeddings
and has labels from more than 600 event classes [3] [6]. The model was trained using the AudioSet
data set which contains 2 million human-labeled 10-second YouTube soundtracks. ResNet50 is a
residual learning model that achieved a 3.57% error rate on the ImageNet database which consists of
hundreds of thousands of images linked to words or phrases [2]. YAMNET is similar to VGGish in
design, although it employs the MobileNet architecture, which is known for its efficiency [4]. We not
only append dense layers to these pretrained networks but also try architectures related to few-shot
learning: a ResNet 50-based Siamese network and a ResNet50-based prototypical network. We also
implemented a RNN model that takes in a similar style of input used in VGGish and YAMNET.
An Adam optimizer was used in all models along with Xavier initialization. The models were
implemented using Keras and PyTorch.

4 Experiments

We selected F1 score as our primary metric to evaluate the performance of our models. In addition
to this, accuracy was recorded for all models. All models had a softmax activation output. A 103



learning rate. A learning rate of 10~2 often failed to converge as the gradients were large could
not reduce loss effectively while 10~* and lower learning rates took many additional iterations to
converge.

4.1 Model A: ResNet50-based fully-connected network

ResNet50 expects an AxBx3 input size (3 channels). The 96x64 MFCCs were stacked thrice and fed
to a ResNet50 base model with weights frozen. Next an average pooling layer was applied. Average
pooling was selected over max pooling because the window size is small and information is not
sparse in the embeddings. After this were two fully-connected layers with 128 units and 40% dropout
followed by batch normalization and the output layer. The model was trained 10 epochs. Model
achieved a weighted F1 score across all classes of 0.30.

4.2 Model B: VGGish-based fully-connected network

VGGish expects an input size of AxBx1. The MFFcs were fed into the VGGish model with the its
weights frozen. Then 3 fully-connected layers of 128 units were applied. The model was trained 100
epochs.

|| Class F1 Score  Precision Recall || || Metric Score H
Hypokinetic 0.43 0.37 0.50 Weighted Avg. F1 Score  0.36
Hyperklnetlc 033 040 028 Test Accuracy 034

Reflux Laryngitis 0.07 0.37 0.19 -
Healthy 0.43 051 037 Train Accuracy 1.0
(a) Performance by class (b) Overall performance

4.3 Model C: ResNet 50-based Siamese network

Two identical networks consisting of a ResNet50 base model followed by an average pool layer and
two 32 unit fully-connected layers were constructed. The two networks shared the same weights.
The euclidean distance between the output embeddings of the networks was calculated and fed to an
output unit with a sigmoid activation function. Binary cross-entropy was used as the loss function.
The model was trained for 20 epochs.

|| Metric Score H
_ Weighted Avg. F1 Score  0.33
H Class F1 Score Precision Recall || oSt Ao ia 0350
Different 0.67 0.50 1.00 ;
Same 0.00 0.00 0.0 Train Accuracy 0.83
(a) Performance by class (b) Overall performance

Figure 3: Model C performance indicators

4.4 Model D: ResNet50-based prototypical network

A prototypical network was implemented using ResNet50. The architecture of the network was
created as Snell et. al. have described [5]. The network was 4-way 5-shot classification with a
softmax output. The final layer of ResNet50 was flattened and used to calculate the euclidean distance
between classes. The weights were unfrozen. The model was trained for 20 epochs.

4.5 Model E: LSTM Model

We implemented a basic LSTM model with a LSTM layer (512) followed by two Dense layers (128
and 4). The input shape is (76, 13) representing the 13 MFCCs over 76 windows of the audio signal.



|| Class F1 Score Precision Recall || H Metric Score ”

Hypokinetic 0.53 0.33 0.53 Weighted Avg. F1 Score  0.52
Hyperkinetic 0.59 0.40 0.57 Test Accuracy 051
Reflux Laryngitis 0.39 0.27 0.33 .
Healthy 0.53 051 0.47 Train Accuracy 0.66
(a) Performance by class (b) Overall performance

Classes were weighted according to their frequency. No dropout was applied, and the model was
trained for 100 epochs. The test classification accuracy was 0.286, and the weighted-F1 score was
0.229. See Figure 5 for more details.
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Figure 5: Results of the best LSTM model

4.6 Model F: YAMNET-based fully-connected network

We replace the dense output layer of 521 nodes, the classes in the AudioSet-YouTube corpus the
YAMNET model was pretrained on, to a hidden dense layer with 256 nodes and an output layer
with 4 nodes for our classification problem. We use the validation set to roughly scope out some
of the hyperparameters, such as learning rate (10~2, 103, 10~%), dropout (0, 0.2), and epoch (10,
20, 50). The best-performing model (according to the validation loss) had a 10~2 learning rate, no
dropout, and 10 epochs of training. The test accuracy across the mini-samples (the various 0.96s
observations) is 0.355. This model also differs in that it trains on mini-samples and the results can be
aggregated by taking the mean of the softmax probabilities across all mini-samples in the recording.
This allows us to visualize segments of the audio to determine which areas are most indicative of the
voice pathology, as shown in Figure 6.

Unfortunately, this model performs degenerately, predicting hypokinetic dysphonia in the training
and validation set before predicting healthy in the test set.

5 Discussion

Initially tested convolutional neural network architectures had large gaps between train and test set
performance. This is likely in large part caused by a small sample size of 208 4 second voice clips in
the VOICED database. Transfer learning using ResNet50 and VGGIsh increased the performance by
5-10%. Several data augmentation strategies were also applied to mitigate this described in the data
section above. These increased F1 scores by around 5% in both models A and B. Larger networks
were also considered for models A and B. Model A with four fully-connected layers with 128 units
with and without dropout were both trialed. The larger networks did not increase performance or
shorten the train and test set gap.

Few-shot learning learning approaches seemed appropriate given the small data size. Model C
attempted to use a Siamese neural network to distinguish between two classes. The F1 score by class



20000

10000

-10000

10000 20000 30000 40000 50000 60000 70000

- I-----
hyperkinetic dysphonia

e II I--- =
0 2 4 6 8

reflux laryngitis

Figure 6: Evaluation of YAMNET-based model on a test recording (signal above). The dark squares
indicate higher softmax probabilities

for this model is useful and showed the model is not predicting any pairs as the same. This is likely
because of the small amount of data despite data augmentation. A few-shot learning approach using
a prototypical network was also attempted. A euclidean distance was calculated between classes
because because Snell et. al. found this to greatly improve performance[5]. 4-way comparisons
performed better than 3-way and 2-way comparisons. This may be because 4-way comparisons
are more difficult and force the model to generalize better and make more tuned decisions. The
prototypical network yielded an F1 score of 52% which is the highest of all models. It performed
slightly worse on reflux laryngitis classification. This could be influenced by reflux laryngitis having
the smallest number of samples of all classes.

The design of the YAMNET-based network was promising with its additional ability to classify
small windows in the recording, giving experts an opportunity to narrow down voice characteristics
associated with the pathologies. However, this requires a good model, and the YAMNET-based
network in this paper fails to perform better than a baseline. We also tried unfreezing the layers, but
this did not prove helpful. This suggests that the embeddings provided by the network lie too far from
those that are truly beneficial to voice pathology prediction, and subsequent layers of YAMNET may
need to be set to trainable. There is also a possibility that the implementation was done incorrectly.

The LSTM model is interesting because it can take in variable inputs, which gives flexibility in
real-word applications compared to the numerous CNN networks that rely on “image" inputs. There
is some skepticism over the optimal processing of the MFCCs [8] that might allow the model to
improve. Stacking LSTM layers might also help performance, although we believed that this would
not improve performance training from scratch.

6 Conclusion/Future Work

We explored several different network architectures to classify 4 vocal fold pathologies. Our proto-
typical network classifier yielded the best results, although it still struggles with classifying reflux
laryngitis and did not achieve an F1 score greater than 0.52. Although prototypical networks have
been shown in the literature to to have high classification rates even with as little as 10 examples
on visual data [5], it could be that audio requires more examples. It may be useful to compare
the performance of this network to a group of experts diagnosing these requirements. It is also
possible that the quality of the audio data with a sample rate of 8000 is not high enough. Another
strategy that could be explored is adding data from other datasets which have similar diagnoses.
Finally, the interpretation of the parameters that are used to constructs MFCCs and spectrograms as
hyperparameters might also yield task-specific optimizations.



7 Contributions

Nishant Badal

* Pre-processed data to extract MFCCs by porting Google Sound Understanding labs pre-
processing audio script

* Augmented audio data using time-shifts

* VGGish model was not available in Keras. Found GitHub repository containing PyTorch
implementation. Learned PyTorch to implement prototypical network

* Created, optimized, and analyzed ResNet50-based model using Keras

* Created, optimized, and analyzed VGGish-based model using Keras

* Created, optimized, and analyzed Siamese-based model using Keras

* Created, optimized, and analyzed Prototypical-based model using PyTorch
*» Assisted with writing final report

Louie Kam

* Produced visualizations of MFCCs, spectrograms, and voice samples.
* Trained and optimized LSTM model over space of hyperparameters.

* Imported pretrained YAMNET model throught GitHub. Trained and (attempted to) opti-
mized model over space of hyperparameters with pretrained weights frozen and unfrozen.

* Contributed to the final report (dataset, model explanation, conclusion, formatting).
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Figure 7: Model C Loss and Accuracy
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Figure 8: Model B Loss and Accuracy
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Figure 9: Model C Loss and Accuracy



