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Abstract— In the field of otolaryngology, diseases of the throat
can be difficult to diagnose due to limited access to trained
professionals and procedures. However, with many laryngeal
diseases having an accompanying vocal dysphonia, evaluation of
auditory recordings has become a topic of interest in recent years.
In this project, we aimed to create a novel end-to-end deep
learning framework VocalPathNet for classifying specific vocal
fold pathology that leveraged recordings of multiple vowels in
order to harness vocal pathologies having different expression
patterns during different auditory tasks. The described model
utilizes a 1-dimensional convolutional neural network (1-D CNN)
architecture that takes as input stacked audio data of an individual
saying the vowels ‘a’, ‘i’ and ‘u’ in neutral, low and high pitch. The
model achieved a final accuracy of 0.779 with an F1 score of 0.765
and an AUC of 0.865, surpassing models that take in only
individual vowel recordings.

I. INTRODUCTION

Changes in voice quality, or dysphonia, is a common symptom
of many laryngeal diseases. While sometimes such a change in
voice represents a short-term nuisance, in other situations it
may be indicative of a more serious condition which may lead
to chronic voice difficulties. Currently, diagnosis of many
laryngeal diseases relies on expert opinion and often
assessments that vary in their levels of invasiveness.
Additionally, a laryngoscopy exam (ideally with stroboscopy)
must be performed by a trained otolaryngologist, and access to
an otolaryngologist may be limited. Additionally, acoustic
and/or auditory-perceptual evaluation of the voice may not
always be possible in many clinics. These requirements make
detection and diagnosis costly and inaccessible in some cases
[1]. Thus, reliable prediction models of specific vocal fold
pathologies have become a topic of interest in recent years [2].

While there has been prior research on classifying both healthy
and pathologic vocal recordings, limited work has been done in
classifying the underlying categories of vocal fold pathology.
Predicting the exact type of vocal fold pathology can provide
additional insight for physicians diagnosing vocal fold
pathologies in patients when compared with previous models
that only distinguish between healthy and pathologic voices.

Machine learning based diagnosis of vocal fold pathology
generally relies on participant recordings of either a
standardized sentence or sustained vowel at various pitches [3].
In the case of sustained vowels, many models are trained on
recordings of a single vowel in a single pitch. The rationale is
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that there are variations across the different vowels that do not
generalize to each other. However, we believe that deep
learning algorithms may identify latent relationships between
these vowel recordings which can help classify between
different vocal fold pathologies.

In this project, we aimed to create a novel end-to-end deep
learning framework VocalPathNet for classifying specific
vocal fold pathology that leveraged recordings of multiple
sustained vowels. For our baseline, we created a model that
took individual vowel recordings as inputs. Our novel
framework took stacked raw audio files of sustained vowels
produced by healthy and pathological as input, and sought to
identify the specific vocal pathology, in this case being
hyperkinetic dysphonia, hypokinetic dysphonia, and laryngitis.

II. RELATED WORK

Classification models built with audio samples have been
developed utilizing various strategies, including both deep
learning and more traditional machine learning approaches.
Many current models utilize support vector machines, multi-
layer perceptrons, and random forests, with deep learning
models gaining in popularity in recent years [2]. Almost
always, feature extraction occurs as a distinct step before
training and prediction. Mel-frequency cepstral coefficients
(MFCCs) remain the most common features that vocal fold
predictors rely on [2,3,4,5,6,7]. Alternatively, the analysis of
spectrograms has also been explored in analyzing auditory data
for similar tasks [8].

The popularity of the “2 step approach” leaves open the
question of the efficacy of a fully end to end approach.
Research conducted by Quan et al. recently reported accuracy
as high as 92% on a similar task of identifying vocal patterns
associated with the onset of Parkinson’s disease[6]. There may
be potential features that are overlooked by extracting MFCCs
that are useful for classifying vocal fold pathology. In addition,
the use of MFCCs is also dependent on the window size
applied in the transformation process [1]. In this project, we
opted to use raw audio samples instead of MFCCs to train a
deep neural network that would predict categories of vocal fold
pathology in a fully end-to-end approach.



III. DATASET

Voice data used in the project has been compiled from the
Saarbruecken Voice Database (SVD) hosted by Saarland
University. These voice samples have served as an ideal source
as one of the largest databases of labeled healthy and
pathological audio samples consisting of both sustained vowels
(i.e., /a/ “ah”, /i/ “ee”, and /u/ “ooh”) and sentences. The
database includes recordings from over 2,000 individuals with
over 70 class labels. For this project, we utilized all nine kinds
of vowel sounds and a selection of 3 pathologies, including
hyperkinetic dysphonia, hypokinetic dysphonia, and laryngitis.
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Voice clips of the vowels ‘a’, ‘i’ and “u’ produced at a normal
pitch were selected into our baseline model dataset. Our dataset
consists of 674 healthy participants, 199 hyperkinetic
dysphonia patients, 13 hypokinetic dysphonia patients and 115
laryngitis patients, each with 9 vowel recordings (Table 1).
These classes were chosen based on their presence in related
works [4].

Class Male Female Total
Healthy 399 248 647
Dysphonia 158 41 199
Hypokinetic Dysphonia 5 8 13
Laryngitis 42 73 115
Total Pathological 205 122 654

Table 1. Counts of each recording type by condition and sex.

Age Brackets
1- | 11- | 21- | 31- | 41- | 51- | 61- | 71- | 81- Total
10 | 20 | 30 | 40 | 50 [ 60 | 70 | 80 | 90
M |76 | 28 [ 120 | 75 | 47 | 21 17 0 0 384
F 1 [ 190 ] 214 ] 68 | 71 | 55 128 | 10 1 638
Table 2. Counts of the age bin distribution across the participant dataset by
sex. M: Male, F: Female

Data Preprocessing

The raw audio data was extracted with a sampling rate of
44100 Hz using the librosa package in Python. Due to the
variability in the recording lengths, this sampling rate was
chosen to provide a relatively large number of data points that
could be included even after trimming. We also examined the
presence of silence in the raw audio data and did not find any
significant period of silence. All of the samples were trimmed
from each end down to the same length of 21,000 values to
avoid nonspecific variations at the starts and ends of phonated
vowels.
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Figure 1. Audio waveform of a sustained ‘a’ in a neutral tone, extracted with a

sampling rate of 44,100. The audio is from speaker 665 and is classified as
having hyperfunctional dysphonia.
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Figure 2. Distribution of the length of audio samples

IV. METHODS

To explore the efficacy of our proposed novel deep learning
framework, we created three different models: 1) a baseline
model that takes in individual vowel recordings as inputs; 2) an
intermediate model that takes in 3 vowels (‘a’, ‘1°, ‘u’)
recordings stacked as inputs; 3) a full model that takes in the
above 3 vowels in 3 different pitches (‘low’, ‘neutral’, *high”)
stacked as inputs. To demonstrate proof of concept, we first
used the models as binary classifiers for healthy versus
pathologic voices. After reaching comparable performance
with existing binary classifiers, we modified the models to
classifying the specific class of vocal fold pathology.

€n% 639 6o

For the baseline model, 3117 audio samples of ‘a’, ‘i’, ‘v’ were
split into training, validation, and testing datasets. For the
stacked vowel and stacked pitch models, audio files were
organized into 3 channel stacks after trimming. For the stacked
vowel input, the neutral pitch vowel recordings were
standardized to the order [a, i, u] prior to being stacked into 3
channels per patient. The final sample count after stacking was
1039. For the stacked pitch input data, the recordings were
standardized to the order [low, neutral and high] by vowel and
by participant, and then were stacked into 3 channels with a
final sample count of 3117. We split each dataset into training,
validation and testing at a 6:2:2 ratio, stratified by their
outcome.

For our deep learning framework, we utilized 1-dimensional
convolutional neural networks (1-D CNN). This model type
utilizes filters to extract features across a set length of the input
data in one dimension, which in this case would be the time
axis. The sequential nature of the audio data as well as the
presence of semi-repetitive qualities, such as jitter and
shimmer, should make the 1-D CNN effective at identifying
hidden patterns within the recordings. A normalization layer
was added after the input layer, which subtracted the input
values from the mean and divided by the standard deviation of
the inputs. Batch normalization of the activation values of each
layer was also attempted, but we found both forms of
normalization reduced the model performance and was
therefore removed from the model. The models were
implemented using keras [14].



1 .
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Equation 1. Binary cross-entropy loss equation

In the binary classification models, the binary cross-entropy
loss function was used. This loss function is effective for
binary classification applications as it effectively captures the
difference between the true class and the model’s prediction.
Only one of the logarithmic terms is ever non-zero as J is
always 0 or 1, and thus the function summarizes whether the
predicted value was in fact close to the ground truth label. The
negative sign is used to invert the log values such that the
function will be minimized when the prediction is accurate.

The 3-channel stacked vowel and 3-channel stacked pitch
input data models were trained on a similar 1-D CNN
architecture utilizing the binary cross-entropy loss function.
The 3-channel stacked vowel input model was used as an
iterative step to verify that the stacking could indeed encode
additional information. We then developed the 3-channel
stacked pitch input data to test whether different pitches of the
same vowel held more latent relationships. The binary
classification task was used as an iterative step to validate the
effectiveness of the stacked input models.

In the multiclass classification model, the loss function we
used was multiclass cross-entropy loss.

1 . .
L= N I 3, vij log(py)

Equation 2. Categorical cross-entropy loss equation. M represents the number
of classes.

This loss function is calculated for each class and aggregated
across the classes. Similar to the binary cross-entropy loss,
only when the class is non-zero, will the loss function
calculate the log value of ¥, the predicted probability. As the
probability values range between 0 and 1, the negative sign
will inverse the log values so that the loss function minimizes
as predictions become more accurate. In the multi-class
classification models, the final output layer is replaced by a 4-
unit softmax activation layer, which provides predicted
probability of the four classes that sum to 1.

For the model training, we used the Adam optimization
algorithm. The function is listed below:
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Equation 3. Adaptive moment estimation, or Adam, optimization algorithm.

Adam provides updates based on the supplied learning rate
and exponentially weighted moving averages of the gradient
and squared gradient for each learnable parameter [13]. Each
model’s hyperparameters were tuned via the random search
feature in the keras_tuner package that optimized the
validation loss. The hyperparameters we tuned included the
number of filters, filter size, size of the pooling layer, batch
size and the learning rate of the model.

V. RESULTS

Through hyperparameter tuning, we obtained the
hyperparameters for our final model. The model specifications
for our final model with stacked vowels at different pitches are
in figure 3 below.
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Figure 3. Model specifications for VocalPathNet (Stacked vowels at different
pitches)

To evaluate the performance of our models, we focused on
three different metrics, including accuracy, area under the
receiver operating curve (AUROC) and the F1 score. The
accuracy reflects the percentage of predictions the model
makes correctly. The AUROC reflects the model’s ability to
discriminate between the different vocal fold pathologies,
specifically when the predicted probability of the specific type
of vocal fold pathology is higher for the correct class than the
others. In the multi-class classification task, there is a class
imbalance issue, where we have significantly higher numbers
of some vocal fold pathologies than others (e.g. 199 cases of
hyperkinetic dysphonia versus 16 cases of hypokinetic
dysphonia). This prompted us to weight the AUROC by the
number in each type of vocal fold pathologies. The last metric
is the F1 score, which is the harmonic mean of precision and
recall. F1 score considers class imbalance and distinguishes
between false positives and false negatives.

In the binary classification task, while the F1 score was
similar (0.842 vs 0.847) between the two models, the accuracy
(0.796 vs. 0.841) and AUROC (0.819 vs 0.890) of the stacked
vowels model were higher than the baseline model (Table 3).
Encouraged by the massive improvement in discrimination,
we modified the models for the multi-class classification task.

The multi-class classification models with the stacked vowels
performed significantly better than the baseline model on the
testing dataset (Table 3). The accuracy of the baseline model
was 0.702, and the 0.817 in the stacked vowel model. The
AUROC of the baseline model was 0.812 compared with
0.846 in the stacked vowel model. The F1 score was
significantly higher in the stacked vowel model with 0.805
compared with 0.650 in the baseline model. Optimal human
accuracy on related vocal pathologies classification tasks were
around 0.6 [7].



Model Accuracy | AUROC Sfolre
Baseline - Binary 0.796 0.819 0.842
Stacked Vowel - Binary 0.846 0.901 0.852
Stacked Vowel with Pitch - Binary 0.821 0.849 0.818
Baseline - Multiclass 0.702 0.812 0.650
Stacked Vowel - Multiclass 0.798 0.860 0.797
Stacked Vowel with Pitch - Multiclass 0.779 0.865 0.765

Table 3. Comparison of model performance

We examined the misclassification rates for each type of vocal
fold pathologies (Table 4). In the baseline model, 8.0% of
healthy voice samples were misclassified, and 53.6% of
hyperkinetic dysphonia samples were misclassified. All of the
hypokinetic dysphonia and laryngitis samples were
misclassified. Whereas in the stacked vowel model, the
number of healthy samples that were misclassified was
slightly higher at 11.6%), but the misclassified percentage of
hyperkinetic dysphonia patients and laryngitis patients were
much lower (35.7% and 30.7% respectively). The hypokinetic
dysphonia patients were all misclassified, most likely due to
the low sample number in our dataset.

Hyperkinetic | Hypokinetic .
Model Healthy 35‘!"‘ . DYyIer . Laryngitis
Baseline 8.0% 53.6% 100% 100%
Stacked 11.6% 35.7% 100% 30.7%
Vowel
Stacked
Vowel with 7.7% 54.4% 100% 38.9%
Pitch

Table 4. Comparison of classification errors in the multiclass models
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Figure 2. Confusion matrix of output classifications from stacked pitch model
trained on training and development data subsets.

In addition to performance metrics, we examined the potential
of overfitting in our models. In the stacked vowel model, the
validation loss was slightly higher than the training loss,
indicating the model is slightly overfit (Figure 2). In future
iterations of the model, we intend to apply dropout to the
convolution layers to see if it narrows the difference between
the training and validation loss. Dropout is a form of
regularization which shuts off certain nodes during the
training process, helping with eliminating some effects of
noise in the data.
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Figure 3. Training and validation loss of the stacked vowel model.

VI. CONCLUSION & FUTURE WORK

In this study, we demonstrated the efficacy of an end-to-end
deep learning framework, VocalPathNet, that takes in multiple
stacked raw vowels recordings to classify specific classes of
vocal fold pathologies. This type of input data architecture
was previously unexplored in deep learning classification
models for classifying voice pathologies. We also expand on
the research in the less explored areas of classifying specific
vocal fold pathologies as well as using an end-to-end deep
learning approach with raw audio recordings from patients.
This proof-of-concept highlights the potential latent
relationships between vowel recordings that can be used to
better diagnose vocal fold pathologies.

For future work, we intend to improve the model through
several approaches. First, we aim to address the problem of
class imbalance, specifically for the hypokinetic dysphonia
patients. We will augment the data through up-sampling on
the recordings from hypokinetic dysphonia patients. Second,
we wish to address overfitting through adding dropout to our
convolution layers. Last, we would like to explore the specific
regions of the recordings that the model focuses on for
prediction. To achieve this, we will implement an attention
mechanism within the convolution layers and observe the
attention vector post model training.
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