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1 Introduction

Knowledge Tracing(KT) is a task to predict each student’s mastery of learned knowledge on future
interactions. It can also suggest new sequences of learning items based on an individual’s learning
state. Optimizing this task helps students reach their full learning potentials.

We plan to build a knowledge tracing model to recommend personalized word learning sequence for
foreign language acquisition purposes.

Using student info and a word, our algorithm will output predictions on whether the student can recall
the given word correctly.

2 Related Work

Several models have been used in the prediction of student’s future performance based on their past
activity, most notably Deep Knowledge Tracing (DKT) and Bayesian Knowledge Tracing (BKT).
Deep Knowledge Tracing applies Long Short Term Memory (LSTM) and recurrent neural networks
(RNN), and Chris Piech, et al found that this method outperformed other models for all three data sets
that they tested on[1]. Several researchers have drawn from these existing models, proposing Dynamic
Key-Value Memory Network (DKVMN)[2], Transformer-based models[3], and other knowledge
tracing techniques[4]. DKVMN adds to DKT by involving two memory matrices, key and value[2].
This model traces how a student’s knowledge changes over time, by allowing the values matrix to be
dynamic while holding the keys matrix static[2]. Our project was built off of these existing methods
mentioned to specifically build a model which assists in a student’s learning of a new language.

3 Dataset

3.1 Initial Analysis

We obtained real student learning data on Duolingo collected from Harvard Dataverse[5]. The raw
data contains over 12 million records where each row represents a word that a user was tested on in a
particular session. Notable columns include the word being learned, userID, timestamp, counts of the
word seen as well as correctness in the past, language being learned, percentage of correct recall on a
given word in this session(named p_recall), and etc.

One of the key observations from this dataset is that the data is imbalanced, with 80% labeled as
1(recall correctly) and 20% labeled as O(recall incorrectly).

The other observation is that each row in the dataset represents a unique word in a given session and
accounts for the total times that word was seen in the session. This meant that our labels were based
on session performance of the total times users saw that word in that session instead of their score
(0/1) after seeing that word just one more time.
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3.2 Data Preparation

Following the initial analysis, we found that we’ll need to pre-process the data before training the
model. Specifically, we took the following steps to pre-process the data:

1. Label: Derive binary labels from p_recall column where label is 1 when p_recall is 100%
and O otherwise. We set a high threshold for label 1 based on the data imbalance issue
described above.

2. Filtering: 1) Filter by language and use english learning records only. 2) Filter out and
discard records of users with only one answer.

3. Factorize the words to encode string values into continuous numerical values.

4. Cross word with answer to form a synthetic cross feature, following the recommendation
from literature review Deep Knowledge Tracing (DKT) [1].

Generate sequence data grouped by user id to get the learning trace per user.
Split the data into three datasets (training, validation and testing).
Apply one-hot encoding.
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Pad the sequences to the same size.

9. Order within each sequence according to the timestamp of response in ascending order
Table 1 shows a summary of the dataset after the above pre-processing steps.

Table 1: Post Pre-Processing Data Summary

# of total user learning sequences 41792

Training set size 26746
Validation set size 6686
Testing set size 8358
Number of words 1739
Cross feature dimension 3478

4 Methods

The problem is formulated as a binary classification problem with the label is defined as y; € {0, 1}
where 0 indicates the student recalls the word incorrectly and 1 indicates the student recalls the word
correctly.

We will minimize the cost function of binary cross-entropy loss:
1 m
o > = (yi*log (pi) + (1 — yi) * log (1 — p;))
i=1

where m is the number of training examples.

4.1 Classical Methods

We started with non-RNN models to get a baseline. We first applied logistic regression using features
including timestamp, delta since last session, count of history seen, count of history correct, one-hot
encoded word, and etc. Since our initial results were poor with logistic regression, besides improving
our existing model, we used another classical method, the Random Forest Classifier, which took in
the same inputs as the logistic regression model.

4.2 Sequence Models

We now switched to apply deep learning methods, specifically sequence models, because given
the nature of the problem where user practice is time series data and there are dependencies and
latent relationships among the time-series elements. Our experiments carried out in three phases as
discussed in the following:



4.2.1 Phase I: RNN Models and Variants

Inspired by Deep Knowleage Tracing(DKT)[1], which is a pioneering paper to use deep learning
for knowledge tracing, we first employed a RNN model using LSTM network. The specific model
architecture can be found below:
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Figure 1: Deep Knowleage Tracing(DKT) Model Architecture [1]

The DKT model consists of four layers, specifically 1) input layer with dimension (batch_size,
sequence_length, cross_feature_dimension) in one-hot encoding of input feature and masked
with padding to conform all sequences to the same length ; 2) LSTM layer whose dimension is a
hyperparameter; 3) dropout layer to prevent overfitting; 4) output layer whose dimension equals to
the number of words using sigmoid as activation function.

We then tried variants of DKT model architecture which replaced LSTM layer with GRU layer.

Although this is a promising method, there are two caveats in the DKT model, which we will address
respectively in phase II and phase III.

4.2.2 Phase II: Transfer Learning

One caveat of the DKT method is that the one-hot encoding of input sequences cannot capture the
relationships across words in the students’ learning history and treats all questions as equally likely
with regard to their relationship with each other. Given the context of our problem space of language
acquisition performance prediction, we hypothesize the relevance among the words learned by a
student should affect how well the student performs.

In effort to address this issue, We used transfer learning to leverage the GloVe pretrained word
embedding ! and modified the DKT model architecture by adding a new embedding layer between
the masked input layer and LSTM layer.

4.2.3 Phase III: Attention Mechanism and Transformers

Another caveat of DKT is that it neglects how a student’s knowledge state evolves as they practice
on different learned words overtime. Such evolving knowledge state can result in the student’s
recall ability stronger in some words and weaker in some other words. This observation led us to
explore transformer architecture to augment DKT model with attention mechanism to learn attention
weights of importance of the questions in sequences. Specifically, we tried the following two model
architectures:

* Dynamic Key-Value Memory Network (DKVMN)[2]: This model utilizes Long Short-Term Memory
Networks (Bi-LSTM) and an additive attention mechanism. It uses the memory matrices: Key(K),

!GloVe: Global Vectors for Word Representation by Jeffrey Pennington, Richard Socher, Christopher D.
Manning



Value(V) to capture the knowledge state evolvement. It also encodes input as a question and response
pair, different from phase II encoding. Details seen in Figure 2.
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Figure 2: Dynamic Key-Value Memory Network(DKVMN) Model Architecture [2]

* Self-Attentive Knowledge Tracing (SAKT)[3]: This model was the first to introduce pure attention-
based transformer method into KT task. It showed promising results on sparse data. Its main
component, the self-attention layer uses the scaled dot-product attention mechanism to learn attention
matrices using multi-attention heads, where attention score is defined as:

T
Attention(Q, K, V) = softmax (%) AY

5 Experiments/Results/Discussion

5.1 Classical Methods Results

We used Random Forest Classifier as the baseline as it helps address the unbalanced data issue. Our
results were initially falsely high, until after conducting feature importance on the model. Here, we
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Figure 3: Self-Attentive Knowledge Tracing (SAKT) Model Architecture
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realized that we were including a feature session_correct in our input data that indicated whether or
not the user actually got the word correct, which is not supposed to be known when the word is asked.
Removing this feature allowed us to get reasonable results that showed better performance than the
Logistic Regression model. This model suffered an issue of low performance on negative labels with
F1 score for negative label of 0.11 and positive label of 0.89.

5.2 Sequence Models Results

The model was trained for 10 epochs with a batch size of 32 on a subset of 10k examples. The AUC
steadily increases with each epoch with the following results:

5.2.1 Phase I Result Analysis

In phase I, we experimented two variants of DKT model, one with LSTM layer and the other with
GRU layer. The model showed promising result given the state-of-art performance of AUC is around
0.6 - 0.7 based on our literature review.[4] The two variants however showed insignificant difference.

5.2.2 Phase II Results Analysis

We then introduced GloVe pretrained embedding layer to capture the relationship between words.
Specifically, the Glove version used is glove.6b.300d which contains 6B tokens, 400K vocab and
represented in 300d vector. This showed a worse result than DKT models in Phase I. We hypnotize
this was due to the embeddings no longer encode the question-answer which based on literature
review|[1].

5.2.3 Phase III Results Analysis
In phase III, we moved onto attention models to address the caveats in the previous two phases. They

both had a boost from Phase II models, although DKVMN still under-performing DKT model. This
indicates simply adding an additive attention mechanism doesn’t give much lift.

Table 2: Sequence Model Results (AUC)

Phase Model Training Set  Val Set  Test Set Hyper Parameters
I DKT w/LSTM 0.6547 0.6473  0.6386 hidden_dim=100
I DKT w/GRU 0.6410 0.6505 0.6402 hidden_dim=100
II Transfer Learning w/LSTM 0.6224 0.6322  0.5880 hidden_dim=100
IT Transfer Learning w/GRU 0.6210 0.6303  0.5647 hidden_dim=100
I DKVMN 0.6326 0.6498  0.6260  key_dim = 50, value_dim = 100
I SAKT 0.6804 0.6786  0.6715  hidden_dim=100, batch_size=512

6 Conclusion/Future Work

The final winning model is the SAKT model, which combines the embedding layer, question-response
pair and multi-head self-attention. This model also supposedly works better on sparse data, in this
case the vocabularies are relatively more sparse than math skills dataset.

Future work include leveraging the result from this paper of performance prediction to recommend
learning sequence, where the performance prediction can act as a simulator for reinforcement
learning recommending algorithms.
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