CS230

Deep Cuisine Transfer
(Natural Language Processing)

Arun Karthikeyan
Department of Computer Science
Stanford University
akarthi2@stanford.edu

1 Abstract

Neural Text Style Transfer (TST) [5] is gaining traction since its inception in 2017. TST aims to
control the style attributes of the text while preserving content much similar to Image Style Transfer.
In this work, we attempt to apply TST to the realm of Computational Gastronomy [1] where we build
a model that can perform style/attribute transfer from one cuisine type to another given the recipe
instructions, source cuisine class and the target cuisine class. Figure 1 represents a simplified outline
of the work.

Cheese pizza recipe

) l
>
Source Cuisine Class: ‘ . .
> Model Indian curry pizza

Italian ‘
{4, L J

Transfer Cuisine Class:
Indian [

Figure 1: Abstract Architecture

2 Introduction

The application of TST to cooking recipes is a very interesting but novel problem at the time of this
writing. Each cuisine has a unique style to its dishes which is often representative of the originating
culture. The style could be based on the choice of ingredients, specific cooking methods, utensils
used, texture of the dish, the way the ingredients are combined etc. The problem is sophisticated yet
interesting because more often than not, foreign dishes are modified and adopted to cater to the taste
buds of natives. What’s palatable in one cuisine might not be so without modifications for another.
That’s how a lot of fusion cuisine is born, Indo-Chinese cuisine for example. Cuisine fusion/adoption
is a rapidly evolving trend in several countries and Deep Learning can definitely help spearhead the
effort here.

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3 Related work

The author of [1] talks about how digitization has led to a large influx of data into the field of food
sciences giving rise to an emerging field - Computational Gastronomy which aims to provide insights
into the field of Gastronomy based on the application of data-driven strategies. [4] provides an
understanding of several different aspects of computational gastronomy including Food Pairing and
Novel Recipe Generation among others, it also provides a brief survey of literature pertaining to these
topics. A very helpful work for this project is [5] which is a survey of TST in the recent years. And
another interesting piece of work related to this problem is [6] where the authors employ TST to
transfer reviews between positive and negative styles while preserving the content. In [7], the authors
have presented a novel recipe generation and evaluation system based on generative language models
which might be helpful for this project. The authors of [2] have discussed about how they used a
Named Entity Recognizer (NER) to extract food entities from their RecipeNLG dataset and feed
the extracted entities to a fine tuned GPT-2 language model [9] to generate novel recipes. Another
interesting work is [11] where the authors try to decode the ingredients of a recipe based on its image.

4 Dataset and Features

The dataset requirement for this problem is to have recipe-instructions and labeled cuisine region/style
that it maps to. Most available recipe datasets [12] either have an Ingredients: CuisineStyle mapping or
Ingredients:Instructions mapping but what we really want is the Instructions: CuisineStyle mapping.
On first look it might look like we could find some way to join these two and use them, or so we
thought originally but its a much harder problem given that they are from different sources. After
conducting an extensive search, we found 2 promising sources of curated data CulinaryDB [3] and
RecipeDB [10]. RecipeDB specifically had exactly what we needed (and more), it had all the 3
Instructions:Ingredients: CuisineStyle fields per row with a size of about 100k recipes. It’s available
under creative commons license [8]. However, it was hosted online but a direct download link isn’t
available. Tried contacting the authors but couldn’t get a response so the only option left was to crawl
the hosted data and construct the dataset ourselves.

4.1 Web Crawler Challenges
The WebCrawler implementation wasn’t straight-forward, we had to cross the following hurdles.
1. The recipe region and instructions were available in nested pages and needed separate

requests for crawling.

2. Crawling the nested pages with recipe instructions required deeper inspection into the
request "post" payload to construct the correct request.

3. The no. of requests to be made was in the order of tens of millions because of nesting, and
required batch async requests implementation to speed up the crawling process.

4. Data join business logic was required after scraping the base-pages and nested-pages to get
required view.

After writing and testing the web scraper, the scraping part alone took over 20 hours due to server
qps throttling for hosted RecipeDB data. But it was all worth it given this data is the backbone of this
project. Here’s some exploratory analysis on the crawled dataset.

vegetable oil cimin seeds Virginigliye- --extra virgin
chiili: powder )
lemon juicegariic g1 . + fomato paste
- garam mdasala oagarkiciiclove
eed red chili-  ** @ A
white wine .
garlic clove 0liversil
Figure 2: Indian Ingredients Word Cloud Figure 3: Italian Ingredients Word Cloud



5 Methodology

For simplicity, we reduce our problem from being able to transfer between multiple cuisine classes to
just between 2 cuisines that are disparate in nature. Based on ingredient similarity analysis, Italian
and Indian is found to be a good choice, Figures 2 and 3. The survey from [5] helped assimilate the
TST domain and helped lay the foundation for the model architecture. TST is broadly classified into
two application areas, TST on Parallel data where there is labeled-data available across multiple styles
with the same content and non-parallel data where only mono-corpora labeled data is available. This
project falls in the realm of Non-Parallel TST. Specifically, we use the Disentanglement approach
where we (i) Encode the text into its latent representation containing the style s and content ¢ vectors
(ii) Control the latent representation to remove all style attribution without tampering the content
representation. (iii) Decode the latent representation by supplying a new target style s’. Figure 4
should give an overview of this approach.

Recipe X with Stylel Recipe X with Style2

( ) 3.

\
1z Presoak ) } ) 1. Boil brown
basmati rice. rice.
2 S:rrrt:)ct)! — } Style? Style? 2. Add carrots,
s a}]d RNNene - i RNNgec green peas
Content |—»| Content and potatoes
potatoes. | to the pot.
\
\

3 i

Figure 4: Latent Disentanglement Architecture

We have followed [6] where the authors have applied disentangled representation learning to transfer
positive reviews to negative and vice-versa on the yelp dataset, at a high level they rely on autoencoders
to learn the latent-representation. The network is incentivized to learn this latent representation based
on separate style and content oriented losses similar to Image Style Transfer.

5.1 Auto Encoder for Latent Representation

We use a sequence to sequence GRU based deterministic autoencoder to map the input recipe
instructions to a latent space L = [S; C] where S is the encoding of the cuisine style and C is the
encoding of the recipe instructions content. The goal is to ensure that the (i) style vector doesn’t
encode content information, (ii) the content vector doesn’t encode style information while (iii) both
style and content information completely capture the input recipe instructions. To achieve this we
work with a combination of multi-task loss and adversarial loss in addition to the encoder-decoder
loss.

Joverall == Jauto—encoder(aAE) + Jstyle(eAEv 05) + Jcontent (GAEa GC)

Note that the autoencoder here also has a decoder component which essentially learns to re-generate
the input recipe instruction given the content and style encoding.

5.1.1 Loss function for style encoding

There are two parts here, the first one is to ensure that style encoding truly captures the style
information, this is achieved by adding a multi-task component to the current model that acts as a
style classifier. In this case we will use the binary cross entropy loss (remember that we have only
2 output classes for style - Indian & Italian), the parameters of this style classifier are denoted by
0s. The gradients from this loss will backpropagate to update 6 4 as well. The second part is to
ensure that the content encoding doesn’t capture any style information. We achieve this by training
an adversarial classifier that deliberately discriminates the true style label given the content encoding,
The intermediate adversarial classifier’s parameter is fixed while we update the content part of 64 g
to ensure the content encoding can’t discriminate style, for this to be true we would ideally want the



output of this adversarial classifier to be uniformly distributed across both all styles regardless of the
input content encoding.

Jstyle (HAEv 08) = )‘mul(s) Jmul(s) (QAEy 05) - )‘adv(s) Jadv(s) (HAE)
5.1.2 Loss function for content encoding

Similar to the style encoding we add a new multi-task component that ensures the content encoding
truly captures the content of the input recipe instructions, we use Bag-of-Words (BoW) features to
represent the content here. The categorical cross-entropy loss is used for this softmax classifier. There
is also an adversarial classifier here that ensures that the style encoding is not able to predict the Bow
features of the content. The gradients from both these classifiers are used to update 6 4.

Jeontent (HAE) 00) = )\mul(c) Jmul(c) (OAE'7 OC) - )‘adv(c) Jadv(c) (GAE')

Note that we processed the input recipe instructions to get rid of stop-words and cuisine-style specific
words before building BoW features. The cuisine-style specific words were crawled from the web
(various Indian and Italian cuisine lexicons).

5.2 Style Transfer

The auto-encoder from the previous section allows us to encode the input recipe instructions into
its latent space which encompasses the style and content encoding while the decoder component
generates the input sentence. The idea is to perform style transfer by injecting the desired style into
the style encoding while keeping the content encoding fixed. We can obtain an empirical estimate of
any style-category by averaging the style encoding of all examples in that category.

Diesy i
Enc(Sr) = rmdCA S
Feeding the desired Enc(St) along with output content encoding into the decoder should yield us
the desired style transferred recipe instructions.

6 Implementation and Evaluation Results

The implementation was inspired by the original work of authors from [6] who built a model for
text sentiment style transfer on reviews amazon and yelp reviews dataset. We used Adam optimizer
for the autoencoder and RMSProp for the discriminators. The initial learning rate was set to 10~3.
The word-embedding layer was initialized by Word2Vec gensim package, we used a 300D work
embedding. We used a recurrent unit size of 256 for the seq-to-seq model, the style encoding vector
size was 8 while the content encoding vector size was 128.

Recipe Name Indian Style Generated Italian Style
Prawn Pepper Masala Heat oil in a saucepan Heat olive pan <EOI>
or wok, add chopped mix mozzarella onion
green chile and onions, garlic prawn <EOI>
stir fry until golden Serve hot. <EOI>

brown.<EOI> Add

curry leaves, ginger

garlic paste and dry

spice powders. <EOI>
slip in the prawns with
50ml water and cook
for 3 to 4 minutes over
high heat until done.
<EOI>

The model was able to split the style encoding reasonably well between Indian and Italian recipes,
figure 5. Automatic evaluation of text-generation models is not straight forward, in our case we



built an independent style classifier with word-2-vec embedding features to assert the strength of the
transferred style in the generated recipe instructions text. The classifier accuracy on the independent
validation set for the Indian and Italian labels was 84.5%. However the assertion for generated
style-transferred text was only 73%, we believe it will get better if we augment the current model
with context-aware attention mechanism since most of the recipe instructions were long sentences. It
should also be noted that the independent cuisine classifier can also be tuned to perform better for
more accurate evaluations.

o
®

,@Y‘
s )

) @

Figure 5: t-SNE plot for sampled Indian and Italian recipe style-encodings

7 Future work

The current model doesn’t have attention mechanism built into it to capture long recipe instructions
effectively. Since the recipe instructions are usually a combination of several sub-instructions
sentences, a context-aware attention based sequence-to-sequence model should be able to perform
better than the current plain sequence-to-sequence model. Another direction we could exploring is to
use [3] to better group similar ingredients together to reduce the high no. of unique ingredients we’re
observing (currently about 20k across all recipes), this will help condense the input vocabulary and
this particular data source should work since [3] and [10] belong to the same source data.

8 Thanks

I sincerely thank the TAs and the Professors for providing me this exciting opportunity of learning
and exploring Natural Language Processing, specifically Text Style Transfer. The knowledge I’ve
gained through this course project was immense, It was a lot of work and I’ll most likely explore this
further even after the course ends.

References

[1] Sebastian E. Ahnert. “Network analysis and data mining in food science: the emergence
of computational gastronomy”. In: Flavour 2.1 (Jan. 2013), p. 4. 1SSN: 2044-7248. DOI:
10.1186/2044-7248-2-4. URL: https://doi.org/10.1186/2044-7248-2-4.

[2] Michat Bien et al. “RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Genera-
tion”. In: Proceedings of the 13th International Conference on Natural Language Generation.
Dublin, Ireland: Association for Computational Linguistics, Dec. 2020, pp. 22-28. URL:
https://aclanthology.org/2020.inlg-1.4.

[3] CulinaryDB. CulinaryDB: Data Analytics for World Cuisines. URL: https://cosylab.
iiitd.edu.in/culinarydb/.

[4] Mansi Goel and Ganesh Bagler. “Computational gastronomy: A data science approach to food”.
In: Journal of Biosciences 47.1 (Jan. 2022), p. 12. 1ISSN: 0973-7138. DOI: 10.1007/s12038-
021-00248-1. URL: https://doi.org/10.1007/s12038-021-00248-1.

[5] DilJin et al. “Deep Learning for Text Style Transfer: A Survey”. In: CoRR abs/2011.00416
(2020). arXiv: 2011.00416. URL: https://arxiv.org/abs/2011.00416.



(6]

(7]

(8]

(9]
[10]

(11]

[12]

Vineet John et al. “Disentangled Representation Learning for Non-Parallel Text Style Transfer”.
In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, July 2019, pp. 424-434. DOI:
10.18653/v1/P19-1041. URL: https://aclanthology.org/P19-1041.

Helena H. Lee et al. “RecipeGPT: Generative Pre-training Based Cooking Recipe Generation
and Evaluation System”. In: Companion Proceedings of the Web Conference 2020. ACM, Apr.
2020. DOI: 10.1145/3366424.3383536. URL: https://doi.org/10.1145),2F3366424.
3383536.

License. Creative Commons. URL: https://creativecommons.org/licenses/by-nc-
sa/3.0/.

Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: 2019.

RecipeDB. RecipeDB: A resource for exploring recipes. URL: https://cosylab.iiitd.
edu.in/recipedb/.

Amaia Salvador et al. Inverse Cooking: Recipe Generation from Food Images. 2018. DOI:
10.48550/ARXIV.1812.06164. URL: https://arxiv.org/abs/1812.06164.

Google Dataset search. Google Recipe Datasets. URL: https://datasetsearch.research.
google.com/search?src=0&query=cooking+recipe.



