Learning Competitive Pokemon through Neural
Network and Reinforcement Learning

Cyril Chun Him Tse
cyriltse@stanford.edu

Abstract

In this project, an AI agent has been trained to play competitive Pokémon. It
was first trained by real players’ battle records, aiming to learn embedding for the
battle states. Then the network is transferred to Deep Q-Learning for optimizing
long term rewards. After finishing the training, the Al successfully beats the two
baseline agents and shows some capability to compete against real players.

1 Introduction

Pokémon is one of the most popular video game franchises in the world. However, its official
competitive format, Pokémon Video Game Championship (VGC), is different from most of the
in-game single format plays. It could be difficult for newcomers to learn the format due to its
ever-increasing mechanics over the 20 years of franchise history. On average, it may take a new
player some months to a year to reach a competitive level. Building an Al to show the best play to
them is one good way to shorten the time and make the competitive scenes more accessible, though
being challenging due to a large number of possible outcomes in each turn. To do so, I will first use
real player data to do supervised learning, and then transfer the network to a reinforcement learning
environment to play in simulated games.

2 Related work

2.1 Alin Gaming

Deep learning has made remarkable progress to surpass human performance in various board games
and videos. Multiple Al has been developed to beat human in all sort of competitive games, from
transitional games like GO[2] to video games like Dota. All those Al are built in a reinforcement
learning setting. Given the similarity in large action space between GO and Pokémon, I decide to
build an AI with a similar architecture.

2.2 Reinforcement Learning in Pokémon

There were attempts to build a Pokémon playing Al through reinforce-learning. Results have been
done using DQL or policy-gradient method[4][5][6][8]. However, none of those Al is built to play
the more complex VGC format. Nevertheless, experience from those projects should be transferable
to this project. One of the most useful resources coming from those research is the architecture of
simulating Pokémon battles. A python library called Poke-env has been created [7]. It communicates
with a showdown server through JavaScript and simulates Pokémon battle for a reinforcement learning

agent. Though it requires bridging two programming languages and has speed implications, it can
save us from building a complicated Pokémon simulator from scratch.

3 Dataset and Features

Data used in this project comes from Pokémon Showdown’s public server, a fan-made online Pokémon
battle platform. They have provided over 4 million battle records for the project. Amongst those
battle records, only games from the top 20% ranked players are put into the Supervised learning
model, so the network can focus to learn the top players’ action. Also to prevent the model overfits to
successive high-correlated game states in the same games, only one action and the corresponding
game state are sampled in each game.

Records are originally stored in game-log (text description of the game in Json format) and were
transformed into state features in Figurel. 700 thousands battle are transformed and 30 thousand of
them will serves at dev-set. No test-set is needed as the model will be tested in the reinforcement
stage. In the transformation process, categorical fields are transformed into embedding features by
stats and type, instead of by one-hot key embedding. That is for shrinking the sizes of input features
and prevent over-fitting. Even with this procedure, the game state transformation results in 4186
features.

Pokémon VGC Battle Environment
[Field Attributes |

| Weather (1 of 5) I I Terrain (1 of 5) l | Extra Conditions |

| Player Side Attributes I | Opponent Side Attributes |

Side Attributes (1 of 19)
i.e., Turn damage, protective effective

Side Attributes (1 of 19)
i.e., Turn damage, protective effective

[Active Pokémon IActive Pokémonl

IActive Pokémon IActive Pokémon]

|Active Pokémonl |Active Pokémonl

|Active Pokémonl |Active Pokémonl

Pokémon Attributes

Pre-Game Attributes In-Battle Dynamic Attributes

* Species * Current Health Point

* Moves * Status

* ltem * Boost/ Nerf

* Abilities * Dynamaxs/ Protect/ Suspended Turn

Figure 1: Features of battle state in VGC

4 Methodology and Network Architecture

The project is divided into two parts: 1) Supervised learning through real player data and 2) rein-
forcement learning on Monte-Carlo tree searching. It is designed in such a way to overcome the slow
simulation of Pokémon games, of which speed is bottle-necked by communication with showdown
simulation servers.

4.1 Supervised Learning (SL)

The main purpose of supervised learning is to build a policy network, which estimated a value
function v €[—1, 1] predicting battle outcome and a probability distribution of potential opponent
action a through the battle state s. Its structure is identical to reinforcement agent policy, such that
the reinforcement learning could have a quick start.

The SL network is a 6-layers ANN network with a final layer combining two softmax units outputting
move probabilities p(a|s), two numeric output specific targeting and a tanh unit outputting value
v(s). The network is trained on random sample pair of (a,s) using gradient descent to minimize loss
function: Loss = a x CrossEntropy_Loss(Movey) + a x CrossEntropy_Loss(Moves) + 8 *
MSE _loss(Target1) + f* MSE_loss(Targets) +* MSE_loss(Value). Note that here I use
MSE to measure the value function, even though it is similar to the classification task on win/loss.
The reason behind is that I want the output range includes negative values, so that the model can be
transferred as part of the reward to the RL easily.

The first layer of the SL network is not fully-connected. All of the twelfth Pokémons have their own
1st-layer module, which will have the same parameters if the Pokémons are on the same player side.
The idea is to use this layer to create embedding in order to reduce input features size.

4218 features

Pokémon1 | selfA i
same
Pokémon 2 |f Self A parameters
Pokémon 3 — Self A
Model A
|
Pokémon5 | Self A I

v
Pokémon 6 Self A
- "
Pokémon 7 ,4 Oppo B /
Sharing i

=Ll Concat. as
parameters BV
= 2N

Pokémon 8

Pokémon 9
Pokémon 10

Pokémon 11

e (N
A;“

Figure 2: SL network structure

4.2 Reinforcement Learning (RL)

In the second stage of the project, the SL network (with only the action output) is transferred to a
reinforcement learning environment to learn maximum the long term return of the agent. Conceptually
it uses the moving probability from the top20% players as a proxy of the true Q-value of an optimal
strategy. For the learning algorithm, I have adopted deep Q-learning here and use e-greedy policy to
learn action selection.

The agent then plays simulated battles in a locally hosted showdown server through the gym wrapper
library. By playing enough games with different agents, the network can optimise the action selection
while considering long-term reward of the game. The reward used here are:

* Outcome (+Win and -loss) of the simulated game
* % Hp of the active Pokemon on both side (+own side -opponent)

* Value function from the SL model (parameters will be fixed and not be trained in RL)

Each of the three rewards was scaled by a different hyperparameter. The outcome of the SL value
function is used as empirical statistics here, aiming to measure how winnable a particular game state
is. This should incentivize the agent to move to a better game state and learn the complex game
easier.

S Experiments Discussion

5.1 Supervised Learning

At the beginning of the supervised learning stage, I was using a more vanilla neural network to learn
the data. However, I found that the model would inevitably overfit, even with Batch normalization
and regulation techniques like dropout or L2 regularization. The overfitted model generally gave a
train set accuracy over 90% , simultaneously returning an accuracy close to a random guess at dev-set.

To investigate the situation, I have picked samples from train-set and dev-set with similar game states
to do some error analysis. From the analysis, I found that the network gave completely different
results in game states that are similar numerically and conceptually, indicating that the model is
memorizing the input instead of generalizing. Therefore, I decided to create the model with a first
layer acting as embedding, which shrinks the size of the features from 4186 to 254. It turns out
prevent the network to over-fit the model.

After finalizing the network structure, I start to perform hyperparameter searching. One of the more
important hyperparameter searches is to decide the weight of different loss components. I set the
value output as evaluating metric while putting the move accuracy as a satisfying metric (more
accurate than a random guess) to evaluate the performance of different loss component weighting.
The rationale behind is that value function cannot be improved in the reinforcement stage, so it is
more important to prioritize it in the SL training. I eventually settle with « as 0.67 while /3 as 1.

result after 3 epochs combination]l | combination2 | combination3
o 1 0.67 0.67
0.67 1 0.67
v (set as 1 to prioritize) 1 1 1
move selection accuracy 0.21 0.19 0.18
move target accuracy 0.33 0.35 0.31
Value accuracy 0.51 0.54 0.54

After being trained with 90 epochs using the chosen hyperparameters, the model achieves the
following accuracy on dev-set:

H SL Result Move action Move target Value(classification) H
| Accuracy 51.8% 84.6% 75.3% |

5.2 Reinforcement Learning

The reinforcement learning agent is evaluated by two baseline agents. One of them is a random agent,
while the other agent is a Max_Damage agent, which is essentially an agent maximize short-term
return on battle damage.

After transferring the network from SL, the agent can already beat the two baseline agent 71% and
62% of times. It shows that learning from real player records can give the agent a solid start.

To begin reinforcement learning, I started to tune the hyperparameters of the reward. After doing
some trials and taking references in the related study[8], I settled by using 0.05 on the hp reward and
1 on the other two rewards.

Using those hyperparameters at the reward function, the agent is then deployed in the simulator to
play 100000 matches against the two agents. It have further learned to maximize the reward and
achieve a better win rate.

Result of the agent after training:

10

0.6

04

0.2

0.0

T T

0 0 0 0 0
'f)QQ bDQQ @QQ @QQ ,\QQQQ

Figure 3: Win rate against random agent while training

|| RL Agent vs Random Agent vs MaxDamage Agent ||
I Initial (SL) win rate% 71.7% 62.9% |
[Win rate% after 150k matches 96.6% 78.2% |

I have also connected the agent to the showdown server to test with real players. It has won some
matches on the lower rank ladder, showing that the Al has learned to play the game to some extent.
However, the Al starts to struggle at average player ranking(1350). One thing I realize is that the Al
tends to spam the same move in successive turns, which can be easily exploited by a real player. I
believe it is caused by training with two unvarying opponents in the training process. Giving more
time to train with a larger variety of different opponents or even self-play, this issue should be able to
overcome. However, since simulating Pokemon battles is very time consuming and simulating 50000
takes around 6 hours, I could not have more training on the agent before the deadline of the project.

6 Conclusion and Future Works

By learning battle records from top-ranked players and then reinforcing the network in simulated
games, the Al agent has learned to play Pokemon VGC battles to some extent. Even trained with
limited resources and time, it has been able to beat the two baseline agents and can be competitive
against humans in lower-ranking Pokemon battles. Given more time to train with a larger variety of
opponent agents, the Al should be able to correct some of its deficiencies.

Another potential improvement is to migrate the Pokémon simulator to Python. Under the current
approach, simulating Pokémon battles in JavaScript is a significant bottleneck. Also without the
possibility to restart the at a specific game states, the Al waste resource to learn the exist path, and
loss out the possibility to try more robust model like Monte-Carlo tree search.

7 Appendix

7.1 Library and open sourced code used

SL learning model : Pytorch

Pokemon simulation server: smogon pokemon-showdown-client at Git-hub
RL learning enviornment: poke-env

Code of RL model is inspired by leolellisr/poke_RL at Git-hub

7.2 Hyperparameter Choices in SL model

|| Hyperparameters Selected value ||
I Learning rate le-6 |
| Learning rate decay rate 0.9 per epoch ||
I layers 6 |
| Activation function tanh |
I a 0.67 I
[B 1 J
[v I I

7.3 Hyperparameter selection

L l i J ‘ I;
3 Lr=1e-7

Lr=1e-5

0 20000 40000 60000 80000 100000 120000
iterations

Figure 4: 1e-06 is chosen as it is the most stable one with least spikes on loss

— I
65 . — frain

45

0 50000 100000 150000 200000 250000 300000 7 20000 20000 0600 80000 100000
iterations iterations

(a) loss with tanh activation (b) loss with Relu activation

Figure 5: Use tanh activation since it is more stable in loss plot

References

[1] Guo, X., Singh, S. P, Lee, H., Lewis, R. L. Wang, X. "Deep learning for real-time Atari game play using
offline Monte-Carlo tree search planning. In Adv. Neural" Inf. Process. Syst. Vol. 27 (eds Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D. Weinberger, K. Q.) 3338-3346 (2014)

[2] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge. Nature
550, 354-359 (2017). https://doi.org/10.1038/nature24270

[3] C.B. Browne et al., "A Survey of Monte Carlo Tree Search Methods," in IEEE Transactions on Computational
Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43, March 2012, doi: 10.1109/TCIAIG.2012.2186810.

[4] S. Lee and J. Togelius "Showdown AI competition," 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 2017, pp. 191-198, doi: 10.1109/CIG.2017.8080435.

[5] D. Simges, S. Reis, N. Lau and L. P. Reis, "Competitive Deep Reinforcement Learning over a Pokémon
Battling Simulator," 2020 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), 2020, pp. 40-45, doi: 10.1109/ICARSC49921.2020.9096092.

[6] Elbert Lin Kevin Chen & Gotta Train. ’Em All: Learning to Play Pokemon Showdown with Reinforcement
Learning. Stanford, CA.: n.d. Web. 17 May. 2022

[7] Poke-env: A python interface for training Reinforcement Learning pokemon bots. https://poke-
env.readthedocs.io/en/stable/index.html#poke-env-a-python-interface-for-training-reinforcement-learning-
pokemon-bots/. 17 May. 2022

[8] Pokémon RL. Git repository. https://github.com/leolellisr/poke_RL/blob/master/Notebook_Report_ MO436_RL_P2.ipynb.
17 May. 2022

