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Abstract

Progress towards the United Nations’ Sustainable Development Goals (SDGs)
has been hindered by a lack of data on key environmental and socioeconomic
indicators, but recent advances in machine learning have made it possible to utilize
abundant and frequently-updated data from satellites to provide insights. We
propose a Convolutional Neural Network (CNN) to predict the child mortality
rate using satellite imagery. We use the SustainBench dataset, which pulls from
the Demographic and Health Surveys (DHS) from 1996-2019. Starting with a
ResNet architecture and applying transfer learning, we are able to outperform the
baseline model proposed by SustainBench, demonstrating the feasibilty of using
deep learning frameworks to estimate child mortality rates from satellite data. All
code is publicly available at this GitHub repository.

1 Introduction

Progress towards the United Nations’ Sustainable Development Goals (SDGs) [1] has been hindered
by a lack of data on key environmental and socioeconomic indicators, but recent advances in machine
learning have made it possible to utilize abundant, frequently-updated, and globally available data
from satellites to provide insights into progress toward SDGs. However, these approaches thus far
have largely been evaluated on different datasets or used inconsistent evaluation metrics, making it
hard to understand performance.

We propose a model for predicting indicators of the progress towards the United Nations’ Sustainable
Development Goals (SDGs) through satellite imagery. Our focus for this project will be to predict the
child mortality rate for a region given the corresponding satellite imagery, as there is evidence that
child mortality is "connected to environmental factors such as housing quality, slum-like conditions,
and neighborhood levels of vegetation™ [5]. With this insight, we hope to facilitate gauging progress
towards SDGs especially in remote, less accessible locations.

The input to our algorithm is a 255 x 255 x 3px satellite image. We then use a CNN to output a
predicted value for the number of deaths per 1,000 children, as our child mortality rate predictions
are grouped into buckets as a classification problem.

JOINT PROJECT DETAILS: This project was completed as a joint project for both CS 230 and
CS231N. We received permission from both teaching teams to use the same code base and results for
both projects. All code and model architectures were developed for both classes.

CS231N: Deep Learning for Computer Vision, Spring 2022, Stanford University, CA. (LateX template borrowed
from NIPS 2017.)



2 Related work

Our task applies CNNs to a regression problem which takes as input satellite imagery and must output
a numerical value using the SustainBench dataset [11]. As such, it is important that we mention prior
work on SustainBench, image classification with CNNs, satellite imagery classification, and final
regression layers.

SustainBench The SustainBench paper[11] introduces SustainBench, a collection of 15 benchmark
tasks across 7 SDGs, including child mortality rate, and includes publicly released datasets for 11 of
the 15 tasks. The baseline for the child mortality rate task is a k-Nearest-Neighbors (KNN) model that
inputs the average pixel value for the the nightlights band. We adopt this baseline but acknowledge
its great weakness as it relies solely on a single average pixel value from the least expressive band
(see last band in Table 1), which fails to adequately represent an 8x255x255 satellite image.

Novel CNNs One approach used for image classification problems such as ours is to hand-construct
a CNN architecture. Sun, et. al. [8] found that a VGG-inspired simple CNN greatly outperformed
the more complex pretrained state-of-the-art CNNs on multi-label classification of Amazon satellite
imagery. Inspired by their success, we constructed our own simple CNN for our second baseline.

State-of-the-Art CNNs The most common approach to image classification problems is to leverage
existing state-of-the-art CNN architectures, such as VGGNet [7] or the more-complex ResNet [4].
While both of these models are for single label image classification, they’re easily generalizable to
other tasks by unfreezing layers and making minor modifications.

In their work classifying snow using multispectral satellite imagery, Xia et. al.[9] apply the multidi-
mensional deep residual network (M-ResNet). Sun. et. al. [8] use pretrained VGGNet, Inception,
and ResNet to classify rainforest satellite imagery. We apply transfer learning with a pretrained
ResNet [4] modified for our regression problem like Xie et. al.’s [10] design of a final regression
layer.

3 Dataset and Features

We use the SustainBench dataset [11], which contains benchmark datasets for several SDG-related
tasks from the Demographic and Health Surveys (DHS) from 1996 to 2019 for 56 different countries,
including child mortality. These satellite images contain eight bands. The first seven bands of the
satellite image are surface reflectance values from the Landsat 5/7/8 satellites and have the following
order: blue, green, red, shortwave infrared 1, shortwave infrared 2, thermal, and near infrared. The
last band in the satellite image is the nightlights band, from either the DMSP or VIIRS satellite. To
pre-process our data, we investigated the distribution of our data using Google Colab.

RGB Composite Image (natural) RGB Composite Image (agriculture) RGB Composite Image (land and water) RGB Composite Image (urban)

Band 1 Band 2 Band 3 Band 4 Band 5

Table 1. RGB composites with different band combinations and grayscale images of the eight
individual bands of the LandSat 5/7/8 for a sample image.

Some entries in the raw SustainBench dataset contained NaNs for the child mortality rate, so we
discarded these data points since our data set is quite large, and these images would impede the
performance of our model without accurate child mortality rates labeled. The following analysis of
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our data refers to the dataset where data points with NaNs for child mortality are cleaned out (105,582
total data points).

Our data contains almost double the satellite images from regions labeled as rural than urban, which
fits our purpose since our goal is to help determine child mortality rates at less accessible sites, which
often tend to be more rural. The labels for child mortality in our data ranges from 5.0 to 166.0, with
a mean of 18.335 and standard deviation of 12.160. All labels are whole numbers stored as floats for
the 105, 582 total data points used.

Following the example of SustainBench [11], we use a uniform train/validation/test data split by
country. Delineating by country ensures that there is no overlap between any of the splits (i.e., a
model trained on our train split will not have “seen” any part of any image from the test split). See
appendix for the specific countries in each split.

Train Validation Test
# of Countries 30 13 13
child mortality rate 69,052 (65%) 17,062(16%) 19,468 (18%)

We also normalized our data before running it through our model. We employed the default mean
and standard deviation values calculated from the ImageNet dataset [3], based on millions of images
from this database, so that gradient descent converges faster.

4 Methods

In order to develop a more accurate child mortality prediction algorithm than those used in previous
works, we employ Convolutional Neural Networks (CNNs) to learn the input-output mappings
between the child mortality rate at a site and the values of the various LandSat 5/7/8 bands captured
by the satellite. For this project, we use transfer learning with residual neural networks (ResNet),
which uses residual blocks and skip connections to allow for larger, more sophisticated models to be
built without running into the issues of over-fitting or vanishing gradients. We modify ResNet to our
task by adding a Fully Connected (FC) Layer to output 167 scores and take the weighted average for
our final prediction. Our implementation was done using the widely-used deep learning framework
Pytorch [6].

Using CNNs over the KNN model used in previous approaches offers the advantage of learning visual
patterns/features, such as lines, boundaries, and textures, as opposed to taking the average value of
pixels (as done with the SustainBench KNN model [11]).The architecture of the CNN as a sequence
of layers allows each layer to use information learned in the previous layer to learn more complicated
input-output relationships than in a KNN model, which simply predicts based on the closest (i.e., the
closest average pixel value for the eight band) image in the training set. We hypothesize that these
characteristics of CNNs would make them more suitable for child mortality rates than KNNs. We
employ the mean-absolute-error (MAE) loss function to train CNNs in our experiments. This loss
function is computed as the sum of the absolute differences between predicted outputs of the CNN yj;
and the ground truth y; across a batch of training examples. The equation for MAE is as follows:
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This loss increases as the average difference between the prediction and ground truth increases. A
learning algorithm training a model with the MAE loss function would tune the model parameters to
produce predicted outputs as close as possible to the expected outputs or ground truth for a given
input satellite image.

To evaluate the success of our model, we have used the Pearson’s 2 coefficient of determination and
the prediction accuracy. We use the 72 coefficient in order to be consistent with the benchmark model
provided by the SustainBench dataset [11]. The equation for the 72 coefficient is as follows:
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While we understand that ultimately this is a regression problem rather than a classification one and
to this extent the prediction accuracy seems like a strange metric, it nonetheless provides a useful
guideline for the precision of our models.

To train our CNN models, we employ the mini-batch gradient descent algorithm with the Adam
optimization algorithm. The Adam optimization algorithm is a combination of two other optimization
algorithms: momentum and RMSProp. Momentum applies an exponentially-weighted average of
the gradient across the last couple iterations to each model parameter. This reduces the noise and
variance in the updates and allows the learning algorithm to avoid getting stuck at saddle points in the
loss function landscape. RMSProp customizes the learning rate used to update each model parameter
in order to help the model parameters converge more quickly. Please see the appendix for Adam
optimizer’s equations.

Mini-batch gradient descent involves applying the average derivative of a model parameter with
respect to the loss function of multiple training examples rather than just one. This greatly accelerates
training on GPUs.

5 Experiments/Results/Discussion

Hyperparameter Tuning For our model, we use default first and second moment parameters for
the Adam optimizer (3,=0.9, $2=0.999) as these are the default values used in many deep learning
frameworks. After some preliminary experimenting we found that batch size did not significantly
affect model performance and thus decided to stick with a standard batch size of 64 for our model.
The hyperparameters we decided to tune, in order, were: learning rate, L? regularization, ResNet
model type, number of frozen ResNet layers, and which satellite bands were used. For this final
satellite bands hyprparameter, we followed Kevin Bulter’s article [2] in interpreting our different sets
of bands. We decided to test out band combinations representing RGB, Agriculture, Land/Water, and
Urban visualizations as these categories seemed most sensible for affecting child mortality rate.

For each hyperparameter, we found the optimal value and then carried this optimal value throughout
the rest of our experiments. We selected each hyperparameter based on which value produced the
highest 72 coefficient on the validation set. We choose hyperparameters to optimize for 72 coefficent
as this is the metric that will be compared against the SustainBench’s benchmark model. Below is a
table of all our hyperparameter tuning trials with optimal values in boldface.

Learning rate (1 epoch) L? Regularization (10 epochs)
Ir Val r2 Weight Decay || Val r?
le-6 0.000 0 0.1748
le-5 0.000 le-6 0.1715
le-4 0.116 le-5 0.1752
le-3 0.149 le-4 0.1695
le-2 0.044 le-3 0.1771

From these, we see that while learning rate was very important, L? regularization had a less significant
impact. Trying higher L? regularizations showed poor initial performance so we decided to set a
weight decay of 0.001 and move forward with tuning.

ResNet Model (5 epochs) # Frozen Layers (10 epochs) Landsat8 Bands (10 epochs)

Model Val 12 Frozen Layers || Val r? Category Val 12

Name 0 0.1771 RGB 0.1790
ResNet-18 0.1752 3 0.1785 Agriculture**|| 0.1030
ResNet-34 0.1091 6 0.1790 Land/Water || 0.1636
ResNet-50* || - 9 0.0099 Urban™* 0.0315

*ResNet-50 gave very poor performance after 1 epoch and so we stopped training early.
*When using agriculture and urban bands, we stopped the model and recorded results after 5 epochs
as we saw poor comparative performance.

Overall, we see that the best model was ResNet-18 when freezing 6 layers, using the RGB channels
of the input images, with a learning rate of 0.001 and Adam optimizer weight decay of 0.001.



Model Comparisons Using the above hyperparameters, we trained our model over

30 epochs. We see that the model’s train and val loss quickly decrease initially,

slightly rise somewhere around epochs 5-10, and then continue to decrease before

stabilizing around epoch 15. These patters are also reflected in the 72 coefficients.
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After running on the test set, we found a significant drop in 72 performance. While our best model
had a val 72 of 0.1790, it achieved a test 72 of 0.0922. We believe this may be due to the design of the
SustainBench dataset; the geography and wealth of the countries in the train and val set may be more
similar while the countries in the test set may be more different. Despite the poorer test 72 coefficient,
this still beats the benchmark and is at present the best-performing model at the given task.

Models Comparison

Category Val r? Test r?
SustainBench kNN (Yeh et. al.) 0.0395 0.0700
CNN Baseline (Milestone) 0.0109 0.0052
ResNet-18 + FC-167 (Final model) | 0.1790 0.0922

Saliency Map Based on the following saliency map example, we see that the model fails to truly
capture the land’s features such as rivers or vegetation, which explains its large room for improvement.

6 Conclusion/Future Work

The best performing model was the ResNet-18 when freezing 6 layers, using the RGB channels of
the input images, with a learning rate of 0.001 and Adam optimizer weight decay of 0.001.

With more time and resources, our team would have loved to explore different architectures, including
VGGNet [7] and further explore deeper neural networks (including ResNet-34, ResNet-50) that could
learn even more complex mappings. While we ran some tests with these models, we did not have the
chance to run more detailed finetuning to optimize these models. We would also experiment with
different band combinations from the satellite imagery in groups of three beyond the natural RGB
bands, including healthy vegetation (bands 7, 3, and 1), as suggested by for Landsat 8 satellite images
[2]. A natural next step for our project would be to create an ensemble-method model of ResNets
across different band combinations where the model prediction is a linear combination of individual
band combination predictions with learnable weight parameters.



7 Contributions

All team members—Raaisa Moktader, Shayana Venukanthan, and Tim Wu—contributed equally. Raaisa
Moktader prioritized data preprocessing, visualization, and loading. Tim Wu prioritized running
the model and hyperparameter tuning. Shayana Venukanthan prioritized model understanding with
saliency maps and evaluation metrics.
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8 Appendix

count 105582 .000000

mean 18.345021
std 12.160344
min 5.000000
25% 10.000000
50% 15.000000
75% 23.000000
max 166.000000

Name: n_under5_mort, dtype: float64



Figure 1. Overall data statistics.
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Figure 2. Number of Rural vs. Urban satellite images.

Train Validation Test
30 countries: 13 countries: 13 countries:
DHS Country
AL, BD, CD, CM, GH, GU, HN, IA, ID, JO, KE, KM, LB, LS, MA, MB, MD, MM, MW, MZ, BF, B), BO, CO, DR, GA, GN, GY, HT, AM, AO, BU, CI, EG, ET, KH, KY, ML,
Codes
NG, NI, PE, PH, SN, TG, TJ, UG, ZM, ZW NM, SL, TD, TZ NP, PK, RW, SZ
child mortality
f 69,052 (65%) 17,062 (16%) 19,468 (18%)
rate

Table 3. Data splits used for training, validation, and testing.

Adam Optimizer equations:
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