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1 Introduction

Buildings designed to withstand earthquake load-
ings aim to resist the generated forces by dissipat-
ing energy through undergoing inelastic behavior
of specific structural parts. In concrete structures,
the designated element to dissipate energy is re-
inforcing steel. These inelastic cycles degrade
the fatigue life cycle of reinforcing steel and can
cause premature fracture which deteriorates the
strength of the buildings. Extracted reinforcing
bars from structural walls that were part of a dam-
aged building in the 2010 Chile earthquake were
tested to evaluate their low-cycle fatigue life. It
was found that they had a reduction of about 40%
of their fatigue capacity compared to intact bars
meaning that those bars would not have been able
to undergo another similar earthquake due to the
cumulative damage.

Modeling fracture in the steel reinforcement of
a concrete wall building has proven to be a very
challenging endeavour; however recently devel-
oped mathematical models permit the simula-
tion of the response of reinforced concrete wall
buildings under earthquake loading. Identifying
the vulnerabilities of the current design building
codes for reinforced concrete buildings is impor-
tant to avoid premature fracture of reinforcing
during an earthquake.

This project intends to leverage the power of ML
and the recently developed physics-based mod-
els that are expensive to compute to create an
efficient surrogate model and to determine the
important features that make a wall vulnerable
to fracture. These insights will enable us to pro-
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vide better design provisions to make structural
concrete more resilient to reinforcing fracture.

2 Dataset and features

Training a reasonable surrogate model can be
challenging given the variety of inputs for the
model, especially the loading coming from earth-
quakes. The main challenge to producing the
data, is to sample wall configurations that repre-
sent the real distribution of actual wall designs
that are built in real life. Random configuration
could be worthless if there is not at least cer-
tain constrains when sampling the wall features.
For example, producing a wall that contains less
than 0.001% of steel or that uses irrational re-
inforcing bar diameters compared to the size of
the wall could be as good as useless. An algo-
rithm that includes several constrains to ensure
reasonable values was implemented to sample the
walls, these constrains include obtaining mean
values from real wall databases and bounding the
distributions from which the random values are
generated to reasonable quantities. Additionally,
building code constrains were considered.

The dataset is formed by a set of features of
the walls including materials and dimensions.
These features are numerical floating point vari-
ables which constitute the input variables for the
physics-based model and the neural network. The
output variable pertains to the categorical type of
variables and corresponds to a Boolean indicat-
ing if there is fracture or not in the wall after the
application of the loading.
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The output of the dataset for this project is pro-
duced through simulations of the existing physics-
based model that captures the behavior of a re-
inforcing concrete wall. The model receives as
input material properties, specimen dimensions,
and loading that were sampled as mentioned be-
fore. The output of this model is the response of
the wall, from this response it is determined if
there was fracture or not.

The number of input features considered in this
study is 55 plus the Boolean output. In total, a set
of 6336 simulations were performed, from these,
there was 2832 specimens that fractured for a
45% of the complete dataset. In an effort to keep
a balanced dataset not all the actual simulations
were used which limited the size of the dataset to
the number above given the computational cost of
the physics based model. Examples of the config-
urations produced by the wall random sampling
algorithm can be seen in Figure 1.

Figure 1: Sample configurations

3 Methods

The features for the model were analyzed before
training and tuning of a fully connected neural
network using Feature Selection methods to iden-
tify variables that can be important and that pro-
vide some insight of what it is relevant to the
correct prediction of fracture. This feature eval-
uation was performed using supervised and un-
supervised methods which difference is based on
whether the output is accounted or not during its
evaluation.

The type of problem that we have is a Classi-
fication Predictive Modeling problem since the
model’s goal is to map floating point numeri-
cal types of variables (features) to a categorical
Boolean type of variable (output, i.e fracture or no
fracture). Therefore methods that we have used
to perform a Feature Selection analysis that fit
our problem data include ANOVA-f Statistics and
Mutual Information Statistics which combined
with an algorithm such as Select K best can pro-
vide us with a selection of features that are more
relevant to our problem.

The project intends to produce a surrogate model
to substitute the physics-based model using Deep
Neural Networks. The method chosen for the sur-

rogate model was a Deep Neural Network with
fully connected layers. In order to train our model,
the neural network uses as the cost function a "Bi-
nary Cross Entropy" function given the nature of
our data.

Methods of Explainable Machine Learning and
Feature Importance were applied to the trained
model. One of the methods uses SHAP (SHap-
ley Additive exPlanations) [6] which uses a game
theoretic approach that enable us to explain the
the behavior of any machine learning model and
its outputs. This method combines local expla-
nations using Shapley values and optimal credit
allocation.

4 Experiments/Results/Discussion

4.1 Feature analysis of dataset

The ANOVA-f Statistics and Mutual Information
Statistics combined with the Select K best algo-
rithm were developed to perform initial feature
selection. The ANOVA-f Statistics method high-
lights some of the steel properties as the more
relevant for the prediction of fracture as can be
seen in Figure 2. The most important features
according to this method include the ultimate
strains of the steel which is the strain at which a
bar monotonically loaded will achieve maximum
stress. This result is not surprising, additionally
ANOVA-f detects the strain of the three types of
steel considered in the model, and as a matter of
fact these types of steel are usually correlated.

The Mutual Information method returns very sim-
ilar results as ANOVA-f prioritizing steel prop-
erties, however it also includes some properties
related to the spacing of the transversal steel that
prevents bars from buckling which accelerates
fracture as can be sen in Figure 3.
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Mutual Information
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Figure 3: Mutual Information

4.2 Deep Neural Network Architecture

The architecture of the surrogate model is com-
posed by an input of 55 features with 6336 sam-
ples followed by 30 fully connected layers with
30 neurons each. The hidden layers are followed
by ReLU activation whereas the output layer ex-
cept is a single neuron with Sigmoid activation to
provide a probability that can be converted into
a binary classification and feed the Binary Cross
Entropy cost function. The model was built using
the Tensorflow framework.

The optimizer used was ADAM with a learning
rate of 0.0001. The final number of epochs used
was 2500 with batch size of 80. Using 80% of
the dataset for training and 20% for testing re-
sults in the Loss history shown in Figure 4 where
the training loss is in light blue and the test loss
is presented in fuchsia. As for the accuracy of
the model, the results can be observed in Figure
5 with the same color code. The model had a
91% accuracy in the training set and 90.2% in
the test set which denotes that the model was
able to learn important features of the wall with
little overfitting. Other architectures including
Batch Normalization and Dropout were used, but
did not provide any improvement. Architectures
with more layers did not provide an improvement
either and they even caused overfitting without
accuracy improvement in the test set.
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Figure 4: Loss history
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Figure 5: Accuracy history

4.3 Explaining the Deep Neural Network

The Deep Neural Network performs at a consid-
erably good level of accuracy, however to un-
derstand why it takes such decisions the SHAP
scores were obtained to try to explain how the
neural network is behaving. Explaining how the
surrogate neural network performs will provide
insights about the actual phenomena happening
in the the structural concrete walls and the causes
of fracture in the reinforcing steel.

The SHAP scores were computed by integrating
1000 data points into an explainer function from
the training set and calculating the scores for the
complete test set. Each feature for each of the
data points from the test sets receives a SHAP
score according to its influence in the decision
of the deep neural network. A summarized plot
of the results can be observed in Figure 6. The
SHAP scores reveal that the model prioritizes as
well several of the steel properties, however it
also includes dimensions of the wall. This set of
features might seem random at first compared to
the Feature Selection methods described before,
but they are indeed quite reasonable.
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Figure 6: Overall behavior of NN



It is well known that the dimensions of the wall
can affect the strain that the bars can experiment
and this is well captured by the model as we can
see in Figure 6 where the length of the wall (Lw)
causes fracture when it has a large value which is
indeed very logical because the larger the distance
of the bar from the neutral axis of the cross sec-
tion the larger the strain which is in turn a direct
cause of fracture. In the plot the high values of
the feature are expresed in fuchsia whereas blue
colors are for lower values. The horizontal axis
expresses the SHAP value and a positive value
indicates that the feature is causing fracture, this
means a fuchsia color to the right means a high
value of that feature influences fracture according
to the model. Each point in the plot is a SHAP
score for each test point for each feature. The
density expresses the Number of points wth a de-
termined value for each feature. Therefore, more
important features are on top.

Another insight is the fact that the model prior-
itizes overall as the most important feature the
post yielding slope of the steel in the boundary
element (EshBou) this indeed is a deep insight
since this value is an important indicator of how
resistant is a material or overall a structure after
yielding. The model catches this value and takes
it in consideration when taking decisions, this is a
remarkable behavior. These insight could suggest
that to make a wall resilient to fracture the steel
material used in the bars should have a larger post
yielding slope.

4.4 Explaining the Deep Neural Network for
single specimens

So far the overall behavior of the neural network
was described, but a local behavior can also be
analyzed. This means that for an specific sample
we can get the scores for each feature and how
they affected the decision of the neural network.
Let’s look at the test set example of a fractured
wall depicted in Figure 7 .

Figure 7: Example of fractured specimen

In the fractured example the neural network con-
siders again that the relatively low value of the

post yielding slope of the steel in the boundary
element will cause fracture, this indeed was ac-
curate since it predicted fracture with 94% of
probability. In this figure the red values push the
model towards considering fracture where as the
blue ones try to push the model to consider that
it will not fracture. The contribution of each fea-
ture ends up adding up to the model predicting
fracture correctly.

Let’s look now at an example from the test set
where there was not fracture. In Figure 8 we can
see how the value of the post yielding slope of
the boundary steel dominates the decision of the
model, but in this case a large value causes the
model to predict correctly that there is not fracture
in the specimen.
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Figure 8: Example of not fractured specimen

5 Conclusion/Future work

The surrogate model developed using Deep Neu-
ral Networks was able to have a high accuracy
predicting fracture, which is not a trivial task. The
model was able to learn important features that
reflect insights from the actual behavior of struc-
tural concrete walls and its components which in-
dicates that the decisions are more than aleatory.

This was confirmed after applying explainable
machine learning methods such as SHAP which
helped us to identify the most important features
causing fracture in the wall according to the sur-
rogate model. Beyond the features that were con-
sidered important by the author before, the ex-
plainable ML methods revealed insights about
other features that might be more relevant than
expected, such as the slope of the steel after yield-
ing.

These important features can be used to also im-
prove the surrogate model by increasing targeted
simulations for training and most importantly to
detect vulnerabilities that should be treated when
designing a reinforced concrete wall building. Ex-
plainable machine learning can give us insights
to improve wall design to prevent fracture during



earthquakes and prove to be powerful tools to
help us understand physical phenomena.

Future work include increasing the training
dataset to improve the model as well as to refine
the constrains for the random sampling to im-
prove the configurations of the walls to approach
reality as much as possible. Additionally, extend-
ing the surrogate model to dynamic analysis that
can help predict the exact time of fracture to try to
predict the actual residual fatigue life of fractures
and help improve its behavior and provide further
insights.

6 Contributions

A surrogate model that is able to predict if a wall
structure is going to have fracture giving its con-
figuration was developed. Valuable insights from
applying explainable machine learning to the cur-
rent model were obtained relating to what features
affect the most the fracture of reinforcing steel
in structural concrete shear walls. These insights
can help us define improvements while designing
a structural concrete wall to make it resilient to
fracture.

7 Literature

The ideas for the surrogate model and explainable
methods were sparked after the following read-
ings: [6], [8], [4], [2], [10], [3], [11], [9], [7], [1]
and [5].
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