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1 Introduction

A recent study by the Federal Emergency Management Agency (FEMA) NIST [2021] found that
20-40% of modern code-conforming buildings would be unfit for re-occupancy following a major
earthquake (taking years to repair) and 15-20% would be rendered irreparable. In recent years,
functional recovery NIST [2021] FEMA [2020] has been proposed in which buildings would be
required to recover their basic, tenant-specific functions in target time T ,,.¢¢¢ for a region-specific
seismic hazard. Our aim is to understand how modern, code-conforming buildings can optimally be
improved to achieve explicit post-disaster recovery time targets. Currently, this can be done using a
simulation-based approach, but makes such a study computationally difficult to implement in practice.

To bypass these computational constraints, we have developed a surrogate model based on a simple
3-story welded-steel moment frame (WSMF) building, a common structure that can be found across
the U.S. This NN is trained using a dataset of median recovery times from two probabilistic (Monte
Carlo) simulation platforms under a range of nonstructural component improvements:

* A building damage and loss platform — FEMA-P58 Mahoney et al. [2018]
* A building recovery platform — ATC-138 Cook [2021]

The raw input to the platform is a 48x1 array containing a 41x1 array of nonstructural component
improvements z; and 7x1 array of engineering demand parameters (EDPs) 2D P; (which represent
earthquake demands - e.g. peak floor acceleration and story drifts). The output of the simulation
is the median recovery time in number of days. Overall, the training data represents the range of
possible recovery times that can achieved under (i) different combinations of nonstructural component
improvements and (ii) different seismic intensity levels for the proposed code conforming building.
The NN is then used in place of the simulation platform for the purposes of optimization.

2 Dataset

Training examples for the NN were generated using a combination of random sampling of the input
feature vector (i.e., randomly varying x; and 2D F;) and hand-engineered cases that would otherwise
not appear in the training set. Overall, the training set contained:

* Subset 1 (~75,000 examples): randomized engineering demands £ D P; and randomized
component improvements ;.

* Subset 2 (~7,000 examples): hand-engineered, "uniform" set; all components in the build-
ing are scaled together at increasing increments of 10%. Repeated at each percentile of
earthquake demands considered for our dataset.
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* Subset 3 (~6,000 examples): hand-engineered "baseline" set; no component enhancements
are made (i.e., each x; is 1.00). Repeated for random samples of £ D P;.

* Subset 4 (~6,000 examples): hand-engineered, one-component-at-a-time (OCAT) set;
components are incrementally strengthened by 10%, one at a time. Repeated at each decile
of engineering demands considered for our dataset.

* Subset 5 (~6,000 examples): hand-engineered, one-system-at-a-time (OSAT) set; one
or more components belonging to a particular system (e.g., electrical) are incrementally
strengthened together by 10%, one system at a time. Repeated at each percentile of engi-
neering demands considered for our dataset.

In each case, x; € [0.50 4.00]. While improvements are more realistically bounded by z; = 1.00 (no
change to original component capacity) and x; = 3.00 (3x the original component capacity), these
broader bounds help increase the number of samples available at our extremes of interest. Together,
the randomized and hand-engineered training examples teach the NN how to predict recovery time
at a wide variety of earthquake intensities that may occur, under a combination of user-defined
nonstructural component improvements.

3 NN Architecture

Our surrogate model took the form of a multi-layered regressor where the inputs are the afore-
mentioned [48x1] vector of engineering demand parameters and non-structural component features.
Initially, we generated hazard-specific models which only accepted the 41 non-structural components
as input features. This required the training of discrete models for three different return periods of
occurrence (72, 475, and 2475 years) and soon proved to be a bottleneck in terms of being gener-
alizable to other levels of hazard. The EDPs were introduced to resolve this issue; these numbers
represent the intensity of the demand posed on the structure under different levels of hazard, thus
freeing the model from being constrained to a specific return period.

In terms of the general framework, we experimented between the KerasRegressor (which relies on a
scikit-learn wrapper) and the mlpregressor in scikit-learn. Although they are theoretically relying on
the same principles, the mlpregressor proved to be more cost-efficient in terms of training time. To
expedite model development, we trained the respective models via mlpregressor and transferred the
weights and biases to a Keras sequential model.

4 Hyperparameter Search

An iterative approach was taken to strike a balance between hyperparameter tuning and training set
generation to achieve increased accuracy. We aimed to achieve 99.5% accuracy on both the train and
test set and increased the number of training samples incrementally. As can be seen in Figure 1(c),
this level of accuracy was generally achieved using 90,000 samples; we observed that the performance
begins to slightly saturate afterwards and thus used 100,000 samples in the final iteration.
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Figure 1: Model performance and dataset generation (a) Histogram of recovery time outputs of the
training set (b) Test-set accuracy of the final model with 3 layers, 120 units (c) Test-set accuracy vs.
training set size.



Particular attention was given to the accuracy on hand-engineered examples as the majority of these
lay at the boundaries of our dataset. For each set of training sample, we tested the performance
for layers ranging from 1 to 5 and hidden units ranging from 10 to 150. The accuracy for each
iteration is shown in Figure 2 below. Across different sizes of training samples, we observed that the
performance generally saturates around Nigyers = 3 and N5 = 120, which we used in the final
model.
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Figure 2: Test set accuracy with varying number of layers and hidden units (a) Breakdown by layer
(b) Color plot of test-set accuracy.

5 Optimization Approaches

5.1 Optimization objectives

Our optimization isolates the optimal set of nonstructural component enhancements that achieve
two objectives: (a) meet a set target recovery time T} 4,4o; While (b) minimizing the number of said
component enhancements. The two objectives together prevent trivial solutions (i.e., a vector in
which each xz; = 3.00) since we are not merely trying to minimize the recovery time.

5.2 Genetic algorithm
For an unguided approach, we used a genetic algorithm, a flexible, population-based method that

is appropriate for use with simulation-based evaluations of the objective function. The objective
function selected for use in this case was:

f(il?) = le + P(f(x) - TtaTget)2 (1)
i=1

where p(T — Ttarget)Z represents a quadratic penalty applied to solutions that do not meet the target
time.
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5.3 Gradient-based approach

For a guided approach, we were inspired by adversarial attacks since our optimization process
involves a fixed neural network model and "perturbing" the input feature vector to meet the target
time T} 4,40+ under the constraint of perturbing as few features as possible. The fitting of an NN to the
Monte-Carlo based framework has the effect of "smoothing out" an otherwise discrete optimization
surface. Thus, our trained NN enables the use of a gradient-descent optimization. To satisfy the two
aforementioned objectives, we utilized the following loss function.

n
L(T(X), 71target) = \/(T(X) - ,Artarget)Q + A Z |CC1 - xtarget,i| (2)
i=1
Since we want the enhancements to be sparse rather than spread out across a large number of
components, we relied on L; regularization. In order to only perturb the non-structural components
vector (i.e. the input of EDPs should be left constant), the gradients of the first seven input features
were reset to zero before applying the perturbations. The gradient-descent was carried out based on

w via where 7 = 0.001 and A = 2000 was used by default with 2000 iterations.

X=X—-1 -

6 Discussion of Results

6.1 Comparison of the two approaches

The optimization results of the two approaches are shown in Appendix A (Figure 5). General trends
hold under both methods, at all earthquake intensities considered. As expected, the gradient-based
approach is more restrained in its selection of components for the design solution, while the genetic
algorithm is slightly more flexible. Components which are deemed important in one method (e.g.,
stairs, glass curtain walls, and HVAC duct drops) reoccur in the other.

6.2 Spectrum of varying target and hazards

We tested our optimization framework to find the optimal set of component enhancements under
two different schemes. In the first scheme, we fix the target time and increase the EDPs from the
Oth to 60th decile as shown in Figure 3(a); this essentially has the effect of applying a more intense
earthquake. We clearly observe the number, as well as the degree, of component enhancements
increase with increasing deciles.

The second scheme is to fix the EDP, and decrease the target recovery time from 49 to 7 days as
shown in Figure 3(b). Again, we observe that the number of enhancements increase to satisfy a lower
target time. It is worth noting that the gradient-based approach faces a limit of achievable target time
under a given penalty factor A (e.g. given the 50th decile EDPs, the minimum target time possible is
13.05 days, rendering 7 days impossible). In these instances, A was iteratively decreased so that the
target time can be achieved at the cost of entailing more component enhancements.

6.3 Multi-hazard, multi-target matrix for decision-making

The resulting NN unlocks the ability to perform multiple optimizations across a range of earthquake
hazard levels and recovery time targets. The resulting matrix (Figure 4) enables engineers in their
decision-making to achieve the above-code performance targets. "Slices" of the matrix represent
fixed target optima at varying earthquake hazards, or varying targets for a fixed intensity of interest.
Cells contain the objective function value obtained through each optimization, or the number of
components involved in the optimal design scheme. Stakeholders can use this information to (i) select
appropriate target times as a matter of engineering policy, (ii) determine a reasonable "first estimate"
of optimal nonstructural improvements subject to specific seismic intensities, and (iii) gauge the
maximum performance gain that can be derived with fixed resources.

7 Codes

The codes for the training and optimization are available at the following repo:

https://github.com/Omarissa/PBEE-Optimization/tree/main/NN_optimization
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Figure 3: Optimal suite of nonstructural component improvements (z; applied to median component
capacity) for a fixed target, repeated for multiple earthquake intensities (a) and for a fixed earthquake
intensity, repeated for multiple target times (b). Such results would be prohibitively expensive using
a simulation-based approach.

8 Contributions

Omar was responsible for the initial ideation for the project as well as the dataset generation. Peter
focused on the hyperparemeter tuning and the transfer of model from scikitlearn to tensorflow. Both
members discussed the best dataset generation scheme and optimal NN architecture. In terms of
optimization, Omar focused on the population-based method, while Peter implemented the gradient-
based algorithm. Similarly, both collaborated on the interpretation of the optimization scheme and
processing the results.
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Figure 4: The NN unlocks the ability to perform nonstructural optimization at multiple earthquake
intensities and target recovery times [days]. The results can be represented in matrix format in terms
of (a) raw objective function value and (b) the actual number of components in the optimal solution.
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9 Appendix A
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Figure 5: Comparison of optima using the two optimization methods and objective functions presented
in Section 5.3: gradient descent (a) and genetic algorithm (b). The results shown are for a 14-day
target time across a range of earthquake hazard levels.



