Singer to Singer Conversion Based on Generative
Adversarial Network

Victor Maurin Yimeng Qin Shanlin Chen
Department of Department of Department of
Mechanical Engineering Mechanical Engineering Mechanical Engineering
Stanford University Stanford University Stanford University
vicmau@stanford.edu yimengqg@stanford.edu shanlinc@stanford.edu
Abstract

In this project, we first leveraged the paper using Deep U-Net convolutional neural
network to separate the vocal audio from the background instrument sound. With
this method, we successfully extract the 7 vocal data from Michael Bublé, Adiana
Grande and Ed Sheeran. The dataset is then input into the CycleGAN-VC2 algo-
rithm to realize the singing style transfer. The choice of dataset and hyperparameter
is critical to synthesis results. Then, the vocal data is combined back with the
instrumental background to synthesize the final results.

1 Introduction

Voice conversion (VC) refers to digitally modifying one’s (source) speech so that it appears to
be spoken by another one (target). It is a significant aspect of Artificial Intelligence as its broad
application area touches on information security, entertainment, rehabilitation, increasing productivity,
and many other topics [1]. In recent years, Voice Conversion techniques has been greatly advanced
by developments in Deep Neural Network (DNN) [2]. In this project, we focus on applying Deep
Learning techniques, specifically the use of Generative Adversarial Networks (GANSs) in speech
conversion and the use of Convolution Neural Networks (CNN) in human voice separation, to tackle
the problem of singer-to-singer conversion. Our algorithm includes a Convolution U-Net model for
human voice separation and a CycleGAN model for singing voice conversion so that the input would
be a song sung by the source signer, and the output will be the same song sung by the target singer.
Our model demonstrates the effectiveness of transfer learning from a plain-speech converting task to
singing-voice converting and provides a creative method of generating deep-faked songs.

2 Related work

At the early stage of Voice Conversion, people focused on using parallel training to match the linguistic
features. For example, Gaussian Mixture Model (GMM)[3], non-negative matrix factorization
(NMF)[4]. However, this technique requires a high quality parallel training database and usually
results with an over-smoothing spectrum, which yields artificial feeling [5]. DNN, on the other hand,
due to the nature of learning from large datasets, is able to provide a more natural conversion. At
the same time, it frees us from understanding the intermediate speech representation[2]. However,
a conventional DNN failed to capture the temporal behavior of speech[6]. CycleGAN(Generative
Adversarial Network), proposed by Kaneko and Kameoka, demonstrated its benefit of training an
unparalleled dataset by capturing a set of audio features from their own domain [7].

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3 Dataset and Features

3.1 Description of Training Set

To create the data set, we have selected two singers that have very different voice features: Ariana
Grande and Michael Bublé. After preprocessing (refer to Section X), we totally have three songs
from Michael Bublé (“Forever Now”, “Have yourself a merry little Christmas”, and “Home”) and
three songs from Ariana Grande (“7 Rings”, “Last Christmas”, and “One Last Time”). Each vocal
signal is chopped into 25 sub-data, where each consists of 6s audio files. After cross validation, we
found that “Forever Now” and “One Last Time” generated the best results, which is described in the
later section. To compare the inter/intra gender factor, we applied the vocal remover algorithm to
extract 34 sub-vocal data from Michael Bublé-"Forever Now” and Ed Sheeran “Perfect”.

4 Methods

4.1 Voice Separation

To obtain the high quality dataset, we leverage the vocal separation algorithm (“vocal remover”)
based on the deep U-net convolutional neural network [8] [9]. The vocal remover algorithm is able to
clearly separate a song into the singer’s vocal part and the instrument’s part. With this algorithm, we
successfully extract the vocal audio from 6 selected songs (3 songs from Ariana Grande and 3 songs
from Michael Bublé).

The algorithm first applied short time fourier transform to (STFT) the raw song (WAV format)
to convert the raw data into the multiple spectrograms. Similar to the U-net architecture, the
spectrograms are fed into the neural network (NN) [Figure.1]. In the encoding stage, a stack of
convolutional layers are applied to shrink the size of the data but increase the channel size. Then in
the decoding stage, upsampling layers are used to recover the audio to the original size.

Decorw2D

Convap Concat » X - 256x16x16
283232 >

Decor2
126x32x32

ConvD
54x16x64

Corw2D Y A 20
321128 W Cropout

Conv2D at Ceconv2D
16x4x256 = Dropout

Figure 1: Vocal Removal U-net Convolutional Layer Algorithm [9]

The loss function of the voice separation algorithm can be defined as:

‘C(X7)/j):||f(X70j)®X_)/j||norm,1 M

Where, the subscript j = v (vocal) or ¢ (instrument). X, Y and 6 notates the original audio signal,
target audio output, and mask parameter generated by the model. And f (X, 6) represents the output
of the neural network.

4.2 Voice Conversion

In this task, We build on the work of Kaneko et al. (2019), who implemented CycleGAN-VC2,
a CycleGAN-based voice conversion model for non-parallel speaker pairs [10]. Based on the
architecture of this algorithm coded using PyTorch [11], we develop both an inter-gender singing

voice conversion model between Ariana Grande and Michael Bublé and an intra-gender conversion
between Michael Bublé and Ed Sheeran. After the conversion, the converted vocal is merged with
the separated background music of the source to finish the song conversion.

Our dataset is made of audio files. To process them and encode them, we are using three libraries
that allow us to effectuate the calculations needed: pyWORLD, Librosa, and Soundfile. After having
encoded our audio files, we feed our CycleGAN model with them.

For the CycleGAN model, the generator is built on the 2-1-2D CNN structure. In this generator
network, 2D convolution layers are used for downsampling and upsampling; then, a 1x1 convolution
layer is added to adjust the dimension. The 6 1D residual blocks stacked in the middle are mainly
responsible for the voice feature conversion process. The dimensions of each convolution layer are
stated in the following Figure.2.Such combination benefits the voice conversion as the 2D CNN
preserves the original structures as it converts features, while the 1D CNN is more feasible for
capturing dynamical change [10]. The discriminator is built on the convolutional PatchGAN classifier
[10]. The PatchGAN discriminator uses 2D CNN to first downsample the input sound file and uses a
convolution last layer to determine the fakeness at the scale of the patch.

K& kel kied bExf hL KIxI Elxd klad Klxl Hl kEad Kizf RAE R3S
Wl 2iif e eB12 wl o cand eite - T] [35 wT
al sind Era [Eird 2NE st giwt §imd aiut o2 §ied siud siad 21
Generator == o =] |- 2 > = A
S Emo =4- I [&] E =G]
PRSI i] B 'I' A g
Downsamgle (200 20—10 Upsamgla {2D)
[L I T Wil kled kieS Wil
will gidl 23 oz o giRd ol
(3} mied add s 2ed mixd gl
Discriminator 5| [= o §=f |- EL B
w5 El= =
iPatchzan) 278 ST e amy
lid

Downsample (20

Figure 2: Network architectures of generator and discriminator. h, w, and ¢ denote height, width, and the
number of channels; k and s denote kernel size and stride size in convolution layers. IN, GLU, and PS indicate
instance normalization, gated linear unit, and pixel shuffler.[10]

The objective function of the above CycleGAN model includes three parts: a two-step adversarial
loss, a cycle-consistency loss, and an identity-mapping loss. Denoting features of the source singer as
X and that of the target singer as Y, the objective function can be expressed as

G* = arg mci;n arg max Loverail @

in which
Loveralt = Ladv(Gx—y, Dy) + Ladw(Gy—=x,Dx) + Ladw2(Gx-y,Gy—x,D'y)+
L odv2 (GX_,y, Gy_x, Dlx) + Acycﬁcyc(GX%Yv GY—>X) + Aidﬁid(GX—ﬂ/7 GY*X)

In this expression, Acyc and \;q are the trade-off parameters between the two corresponding losses.

3

Two-Step Adversarial Loss consists of a common one-step adversarial loss that measures whether a
converted feature, such as Gx _,y (), is indistinguishable from its target Y,

Ladv(Gx—y,Dy) = Eyopy (1) [logDy (y)] + Exnpy (x)[log(1 — Dy (Gxov ()] D)

and an additional discriminator D’ loss which measures whether the circularly converted feature
(Gx_vy(z),Gy_ x(y)) is indistinguishable from the original source X [10].

Ladv2(Gx 5y, Gyox, D' x) =Egapy (z)[logD’ x (z)]
—|—]Em~px(z)[log(1 = DIX(GYaX(GX—)Y(I))))] ®

Cycle-consistency loss is implemented to preserve the structural consistency between features of the
Generator’s input and output.

['cyc(GX—>Y7 GY—>X) = EINPX (z) [| |GY—>X (GX—>Y (17)) = .ZU| |norm,1]
+]EyNPy(y) lGx-y(Gy—x(y)) — Z/||norm,1] (6)

Since both forward-inverse and inverse-forward mappings are simultaneously learned, this loss
function will encourage the model to develop an optimal (X,Y") pair through circular conversion
[12].

Identity-mapping loss

Lid(Gxoy,Gyox) =Eyup, i) [[|Gxsy (@) — Yllnorm,1]
+ IEOCNPX(I) [||GY—>X (I) - l‘| |norm,1] @)

is implemented to further preserve linguistic information.

5 Experiments/Results/Discussion

The authors suggested some hyperparameters to use. For both male-to-male and female-to-male
trainings, we used the learning rates: 1e~* for the discriminator, and 2e~* for the generator, as well
as the betas of the Adam optimizer: 5; = 0.5, and B2 = 0.999. We also used a linear learning rate
decay, which starts at 20,000 iterations, and which for each iteration higher than 20,000 subtracts
the value of the learning rate by (a/200,000), being either the learning rate of the generator or of the
discriminator. Also, the kernel size, the padding, and the stride of every convolutional layer were
chosen based on the suggestion of the authors [10]. Finally, the constant values of the generator and
discriminator loss functions were chosen according to the paper: ;g = 5, and Acy. = 10.

For the other parameters, we have tried to optimize them to tend to better results. As a reminder,
the CycleGAN-VC2 has been designed for voice-to-voice conversion based on speeches, and not on
songs. This difference is very important, as the voices of singers are much more dynamic and have
much more features than voices from speeches. This is therefore harder for the generator to identify
and match the correct voices, when generating certain parts of songs (for instance, the generator was
not able to generate a proper voice for the lyrics “One last time” sung by Ariana Grande, in any of
our training sessions. See the files “OneLastTime_VocalsFrom36.0to42.0” from the "Final Project
Audio Files" link in Appendix). The parameters we tried to optimize were: The mini-batch size, the
number of residual layers, and the number of epochs we trained for.

For the mini-batch size, the author suggested the use of 1.[10] However, we decided to try several
other values to see what impact it would have on the training. The values used were all powers of 2,
and were ranging from 1 to 32. The use of higher values was motivated by a faster decrease of the
generator loss function with less oscillations, which gave the expected result. However, the quality
of the generated audio files was decreasing as we increased the mini-batch size (more robotization
of the voice, the voices features were not identified as well, etc...). This motivated us to change
back the mini-batch size to 1 which gave better results for higher generator loss function values. In
fact, it seems that with a mini-batch size of 1, we encourage the network to learn the features of the
voices independently from the features of the audio files that the network is using to train on at each
epoch. Indeed, we obtained much better and much clearer voices this way [See the "Final Project
Audio Files" link in Appendix]. It also led us to see that decreasing the generator loss function was
becoming a bad metric at some point of the training, as there was not a clear correlation between the
loss function value and the quality of the songs when the loss function started to converge (values
around 5 or 6). This analysis can also be transposed to the number of epochs. Indeed, we also
tried to train for a very high number of epochs (up to 20,000). However, we did not observe a huge
improvement for a number of epochs ranging from 5000 to 20,000. The generation was sometimes
better, sometimes not, than the previous generations. You can see how the loss functions look like
for one of our trainings on figure 3. The x-axis being the number of iterations and not the number
of epochs. On this figure, the quality of the audio was increasing as the Generator loss function
decreased down to a value of around 6. Then, the quality of the audio became decorelated with the
value of the loss functions. This is something we observed for both intragender and intergender
conversion.

The parameter which optimization was certainly the most successful was the number of residual
layers. In fact, the authors explained that the residual layers were helping to capture the dynamical
change of the voices [10]. Since singer voices are really dynamic, as explained before, we decided
to increase the number of layers from 6 to 8 for the female-to-male conversion to see if we could
improve the quality, which led to an overall improvement of the voices. For male-to-male conversion,
we decided to keep the number of layers to 6 due to the lack of time. In the female-to-male case, It

o
o
COTEETD

Generator Loss
Discimnator Loss

1 15 2 25 0 0.5 1 1.5 2 25
Number of Iteration 10* Number of Iteration 10*

0 0.5

Figure 3: a.) Generator Loss b.) Discriminator Loss for Ariana Grande - Michael Bublé conversion

seems that the CycleGAN model was able to better capture the voices features of each singer when
generating the songs with this number of hidden layers. This is definitely something we would have
tried on the male-to-male conversion if we had more time.

Overall, qualitatively, converted vocal in male-to-male conversion sounds much more natural than
that of the female-to-male conversion [See the "Final Project Audio Files" link in Appendix]. That
was expectable since the voices of Ed Sheeran and Michael Bublé are really similar. For Ariana
Grande and Michael Bublé, the conversion is promising but still needs some improvement. It seems
that for some pitches, the network is not able to perfectly convert the voices, which results in some
wrong notes compared to the original songs or simply some missing lyrics. Intragender conversion
also seems to give better results in the author paper than intergender conversion. However, one big
conclusion we can make out of this project is that song to song conversion is really different from
speech to speech conversion, as songs are much more complex (the pitches are changing highly, the
voices are very dynamic, etc...)

6 Conclusion/Future Work

To conclude, we have seen that the CycleGAN-VC2 algorithm allows a very efficient and pretty fast
voice conversion with unparalleled training sets. The basic algorithm is capable of identifying the
overall pitch and features of each singer’s voice, and generating them (with some robotization) with
high fidelity. Since the voices are really dynamic, adding residual layers to the generator seemed
to have increased the voice quality, and decreased the robotization. One downside of this was that
the training was longer. It is also interesting to see the intragender (Michael Bublé - Ed Sheeran)
generation gave much better than the the intergender (Michael Bublé - Ariana Grande) generation.
Those difficulties have led us to one important piece of information: Singer to singer conversion is
much more difficult than a simple voice to voice conversion. Conversion is certainly harder for the
generator, since songs have much more features than speeches. The pitch can vary a lot (We can
really hear this in Ariana Grande’s songs), there are also many more features that the generator has to
learn, etc... Overall, songs for which the pitch was varying a lot were definitely the hardest for the
generator to generate.

If we had more time, we would certainly continue to optimize the number of residual layers. We
would also refine the padding, the stride, and the kernel size to see what effect they would have on
the quality of the songs. Finally, we would certainly try other artists to continue to understand how
the algorithm works in order to refine it.

7 Contributions

All authors contributed equally to the project. Victor Maurin contributed mainly to the implemen-
tation of the CycleGAN-VC2 model and the hyperparameter tuning. Yimeng Qin focused on the
dataset preparation, implemented the voice separation and synthesis, as well as contributed to the
hyperparameter tuning. Shanlin Chen was responsible for the model training on AWS, as well as

contributed largely to the submittables. All three team members have participated in literature review,
model training, and writing submittables. A special thank to our TA, Allan Zhou, for his advice on
model selection, experiment strategies, and hyperparameter optimization.

References

[1]Sisman, Berrak, et al. “An Overview of Voice Conversion and Its Challenges: From Statistical Modeling
to Deep Learning.” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, 2021, pp.
132-157., https://doi.org/10.1109/taslp.2020.3038524.

[2]“Voice Conversion Challenge 2020.” Voice Conversion Challenge 2020, http://www.vc-challenge.
org/#:” :text=Voice%20conversion%20(VC)%20refers’20to, the%20original’20speakery,
20 (source).

[3] Toda, Tomoki, et al. “Voice Conversion Based on Maximum-Likelihood Estimation of Spectral Parameter
Trajectory.” IEEE Transactions on Audio, Speech and Language Processing, vol. 15, no. 8, 2007, pp. 2222-2235.,
https://doi.org/10.1109/tasl.2007.907344.

[4]Luan, Yi, et al. “Semi-Supervised Noise Dictionary Adaptation for Exemplar-Based Noise Robust Speech
Recognition.” 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
https://doi.org/10.1109/icassp.2014.6853897.

[5]Kaneko, Takuhiro, et al. “Sequence-to-Sequence Voice Conversion with Similarity Metric Learned Using
Generative Adversarial Networks.” Interspeech 2017, 2017, https://doi.org/10.21437/interspeech.
2017-970.

[6] Daher, Rema, et al. “Change Your Singer: A Transfer Learning Generative Adversarial Framework
for Song to Song Conversion.” 2020 International Joint Conference on Neural Networks (IJCNN), 2020,
https://doi.org/10.1109/1ijcnn48605.2020.9206878.

[7] Brownlee, Jason. “How to Develop a Cyclegan for Image-to-Image Translation with Keras.” Machine Learn-
ing Mastery, 1 Sept. 2020, https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
#:7 :text=The},20benefit%200£f%20the%20CycleGAN, the)20day’%20and%20at20night.

[8] Tsurumeso. “Tsurumeso/Vocal-Remover: Vocal Remover Using Deep Neural Networks.” GitHub, https:
//github. com/tsurumeso/vocal-remover

[9] Jansson, Andreas et al. “Singing Voice Separation with Deep U-Net Convolutional Networks.” ISMIR (2017).
URL: https://ismir2017.smcnus.org/wp-content/uploads/2017/10/171_Paper.pdf

[10]T. Kaneko, H. Kameoka, K. Tanaka and N. Hojo, "Cyclegan-VC2: Improved Cyclegan-based Non-parallel
Voice Conversion," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 6820-6824, https://doi.org/10.1109/ICASSP.2019.8682897.

[11] jackaduma. “jackaduma/CycleGAN-VC2.” GitHub, https://github. com/jackaduma/CycleGAN-VC2

[12]T. Kaneko, H, Takuhiro and H. Kameoka. “Parallel-Data-Free Voice Conversion Using Cycle-Consistent
Adversarial Networks.” arXiv:1711.11293, Nov. 2017 (EUSIPCO, 2018) https://doi.org/10.48550/
arxiv.1711.11293

8 Appendix

8.1 Final Project Audio Files
Examples of training data and converted vocal files, as well as the synthesised final converted song for both

male-to-male singer conversion and female-to-male singer conversion: https://drive.google.com/drive/
folders/1jhXc_Dzn3-A8HPGi6kjDq0s7eM0319rc?usp=sharing

8.2 Codes

“yimengq/CS230.” GitHub, https://github.com/yimengq/CS230

