CS 230 Final Report — Spring 2022

Avi Gupta Roshini Ravi
Department of Computer Science Department of Computer Science
Stanford University Stanford University
avigupta@stanford.edu roshini@stanford.edu
Abstract

We develop a strong classifier and a deep convolutional generative adversarial
network for the Street View House Numbers Dataset. We employ a deep convo-
lutional architecture to produce a highly accurate classifier for recognizing digits
in the dataset. We apply the learnings from the classifier to create a DCGAN that
generates synthetic address number images, with mixed results. Finally, we present
preliminary results of attempting to classify (using our classifier) the synthetic
images generated by the DCGAN.

1 Introduction

Our project focuses on a specific application of optical character recognition (OCR) — recognizing
the address numbers of homes. This project is motivated by the potential of automated recognition
systems to significantly reduce inefficiencies in package deliveries and other navigation applications.
For example, deliveries of packages to private homes and businesses could be rendered more efficient
by precise address number recognition to ensure that the package is delivered to the appropriate
residence. This may be particularly salient in contexts where GPS is unavailable or insufficiently
accurate. Therefore, we leverage the Street View House Numbers (SVHN) Dataset to build a classifier
that can detect digits in natural images. This work could have more general implications outside of
address numbers such as object detection and optical character recognition. Therefore, this classifier
could also be extended to more difficult OCR problems such as recognizing English text from images.
We have also developed a preliminary deep convolutional generative adversarial network (DCGAN)
inspired by the learnings from developing the classifier that produces synthetic address number
images from random noise. Finally, we demonstrate the robustness of the classifer and the DCGAN
by feeding synthetically images generated using the DCGAN into the classifier and demonstrating
that the classifier identifies the correct digit in the limited cases where there is a clearly legible digit.

2 Related work

Multi-digit-recognition is generally approached in two different ways. Traditionally, the localization,
segmentation, and recognition steps are separated. This strategy is well-researched and is essentially
identical to the classification task completed on the MNIST dataset. This machine learning task has
been accomplished via various techniques such as multinomial logistic regression, a standard CNN, or
residual learning models such as ResNet. Although this decoupled approach achieves high accuracy,
making predictions with this model entails preprocessing the test data into individual digits. This
becomes an increasingly intensive task as the amount of test data and the number of digits within an
individual test sample increases. Marking off individual digits would require manual labeling, since
automating the digit border identification is itself a complex ML problem. Therefore, the motivation
for a model that can successfully identify multiple digits is high.

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



(a) Original (b) Resized (c) Greyscale

Figure 1: Data Preprocessing Example

Some studies have used a single digit classifier and transfer learning to build final multi-digit
classification model. This approach has proven less accurate than some of the others that were
explored. [2] State-of-the-art performance on this task is currently 0.99% error and was achieved
through the application of Sharpness Aware Minimization [6], a parameter search technique on
WideResNets with ShakeShake regularization. [22] Other promising implementations focus on
increasing direct connections between layers of a CNN [10] and building a CNN inspired by an RNN.
[19]

Although GANSs are a relatively recent innovation, their broad array of applications has catalyzed
a robust body of literature we drew upon. Vanilla GANs were proposed in 2014 in “Generative
Adversarial Nets,” which outlines the adversarial training model, shows important theoretical results,
and compares GANs to existing models.[8] Building on this work, DCGANs were proposed in
2015 as a unsupervised technique for learning image representations.[15] DCGANSs introduce the
innovation of removing pooling layers in a GAN, an approach inspired by a 2014 paper, “Striving
for Simplicity: The All Convolutional Net.”’[17] This paper proposes to replace pooling layers
with strided convolutions to create a all convolutional CNN. We replicated this approach in our
DCGAN. Lastly, because training GANs is particularly challenging, there is also literature on training
tips, including one 2016 paper co-authored by GAN creator Ian Goodfellow entitled: “Improved
Techniques for Training GANs.”’[16]

3 Dataset and Features

We are working with the SVHN Dataset which is administered by deep learning researchers here at
Stanford.[13] The dataset contains “73257 digits for training, 26032 digits for testing, and 531131
additional, somewhat less difficult samples, to use as extra training data.” The dataset is available
in two formats (MNIST style and original images with bounding boxes), both of which we hope to
investigate in our project.

For the purposes of the multi-digit-recognition model, the training data from the original SHVN
dataset was first split into train and validation subsets, with a 4:1 ratio. The train data was augmented
with 10% of the extra data as was the validation data. In total this constituted 46955 training examples,
26916 validation examples, and 13068 test examples. Each image in the dataset was cropped to
the bounds of the individual digits in the image and then expanded by 12.5% in each direction and
resized to a 64x64 size. The images were also converted to a grayscale, i.e. converted from three
channels to one. The images were also normalized by dividing the float values by 255. With respect
to the labels the images were assigned, the original labels which were set to be the numbers shown in
the image, were split into individual digits and expanded to lists of 5 digits each where any digit that
did not have a value in the original image was set to be 10. For example, the image in Figure 1 which
originally had label 19 was converted to [1, 9, 10, 10, 10].

The same data preprocessing steps were applied to the images generated by the adversarial network.

An example of this preprocessing is presented in Figure 1.

4 Methods

4.1 Classifier

While there exist a plethora of different strategies and architectures for solving this problem, in
implementing our base case, we focused on a model with a high performance that was also straight-



forward in its implementation. Goodfellow et al combine a series of data preprocessing steps, data
augmentation, and the DistBelief implementation of deep neural networks [7]. We benefited from
their general preprocessing techniques and architecture structure.

Specifically, beyond the data preprocessing enumerated in the section above, we executed the model
structure shared in Figure 2.

Differences between our architecture and that proposed by Goodfellow et al, include: the activation
functions we chose to apply - consistenly ReLU, wherein Goodfellow et al also used maxout units;
no predictions on the length of the digit sequence; and dropout only on the final layer. We found that
these changes simplified our model and its running time without drastically affecting its performance.

L

Figure 2: Model Architecture

Layer 4
Layer 8

42 GAN

An additional component of our project was the creation of a DCGAN to produce synthetic images
mirroring those in the SVHN dataset. Our approach was inspired by the seminal 2015 paper and best
practices throughout the GAN literature.[15] [16]

The discriminator architecture we ultimately settled upon consisted of four stacked convolutional
layers interspersed with batch normalization and Leaky ReLU activations. A linear layer collapses
the output down to a single output neuron. This was inspired by our classifier and tweaked to reflect
DCGAN best practices. We employed Leaky ReL.U based on the literature and on our experimentation,
which suggests it is a superior choice for DCGAN:S in particular. This marks a contrast with the 2013
paper on GANs which employed a maxout function.[8] Moreover, the DCGAN paper suggests using
batch normalization for both the discriminator and generator networks.

Our final generator used a linear encoding of the noise vector followed by repeated transposed
convolutions interspersed with batch normalization and ReLU activations. We avoided pooling layers
(which would typically be used in a CNN) based on the results presented in the DCGAN paper
and other references.[17] Crucially, we concluded our DCGAN with a tanh activation function, as
suggested in the paper. The full details of both architectures are available in the code submission
accompanying this report.

4.3 Feeding GAN Images to Classifier

Using the generator network developed during DCGAN training, synthetic images were generated
from random noise. They were then preprocessed in an identical manner to the images that were
earlier fed into the classifier (resizing, grayscale, normalization, etc.) to produce labeled results. This



Single-Digit | Full-Sequence
Train 99.17% 96.32%
Validation 97.43% 90.15%
Test 97.02% 88.08%

Table 1: Accuracies

work is preliminary and was therefore only performed on a small number of GAN images, but serves
to illustrate the correctness of some of the GAN images and the robustness of the classifier to changes
in input.

5 Experiments/Results/Discussion

5.1 Classifier

After training the model, accuracy was measured in two ways. Given each image had 5 components
to its label, single-digit accuracy represents how many of those 5 components were accurately for the
total number of predictions made, i.e. for a single image with label [1, 9, 10, 10, 10], if the model
correctly predicted the first, fourth, and fifth digits, single-digit accuracy would be 0.6. Full-sequence
accuracy encapsulates the number of images within a set of predictions wherein the classifier correctly
predicted each digit of the image. In the prior example, since the model did not correctly classify the
second and third digits of the model, full-sequence accuracy would be 0.

The original Goodfellow et al model performed at 97.84% single-digit accuracy and 96.03% full-
sequence accuracy. Based on the accuracies shown in Table 1, it appears that our model has overfit
to the train data. This is potentially a consequence of not incorporating sufficient dropout. While
our model does do well on the validation and test sets with respect to the full-sequence accuracy, its
performance is still lower than Goodfellow et al’s. We did not perform any data augmentation in our
work which likely would have improved our model’s ability to generalize.

5.2 GAN

Figure 3: Example of noisy GAN images

i "HNE

Figure 4: Examples of more legible GAN images

The results of our DCGAN were mixed but fairly positive. GANs are notoriously difficult to train, and
ours was no exception. Some training runs led to good results, while others diverged. For example,
Figure 1 depicts a DCGAN output with no intelligible numbers and a great deal of artifacts and
random noise. In contrast, Figure 2 has several images with legible digits. For example, the rightmost
number clearly contains a 4 while the 4th image from the left contains a 3.

We employed many training techniques, including varying the hyperparameters of the Adam optimizer,
changing weight initialization, and modifying the number of training epochs. Our approach could be
improved by deepening the model architectures, enhancing the training time (we were limited by our
one AWS instance), and exploring different training techniques, such as differentially updating the
discriminator and generator. We could also have explored adding dropout to the generator function,
which has produced good results in some studies.[12] [20]



These results exemplify the randomness inherent in DCGANSs. Both of these results were produced
using the same model, but one shows much clearer numbers compared to the other. Therefore,
improving this model may not require architectural changes, but rather hyperparameter tuning and
extended training. We initialized weights from a normal distribution with mean O and variance
0.04 and trained the discriminator and the generator networks with an Adam with oo = 0.0002 and
B1, B2 =0.9,0.999.

5.3 Feeding GAN Images to Classifier

Prediction 23 Prediction 5 Prediction 17 Prediction 3 Prediction 23 Prediction 4 Prediction 486 Prediction 4

B S 1

Figure 5: Results predicted by classifier on generated images

Lastly, we present initial results of feeding generated images into the classifier to see whether our
GAN-generated images were cognizable by our classifier trained on the original data. Because the
GAN seeks to learn the original distribution of the data it is trained on and the classifier performed
strongly on that training set. However, because the GAN outputs unlabeled images, our analysis
is confined only to those images that clearly depict a number. In the case of Figure 3, the clearest
images are the 4th, 6th, and 8th in the top row, which appear to be 3, 4, and 4 respectively. The labels
above the images correspond to the predictions of the classifier on the generated images. Multi-digit
labels indicate that the classifier believes that multiple numbers are present in the image. For example,
a prediction of "23" means both 2 and 3 are in the image. In this case, the only images that have clear
labels (the 3, 4, and 4 denoted earlier) appear to be correctly labeled. Therefore, both the GAN and
the classifier appear to be performing reasonably well on this limited example. If the GAN were
to be improved further (using the methods described in the previous section), we expect that the
classifier would easily identify the digits present in synthetic images given its strong performance on
the training set and in this example.

6 Conclusion/Future Work

This project has produced a strong classifier using deep convolutional neural networks on the SVHN
dataset. The classifier exhibits robust performance and compares favorably to the state of the art on
this dataset. We have also presented the initial development of a DCGAN whose architecture was
inspired by the classifier to generate synthetic address images. However, despite repeated efforts and
variations in architecture and training formula, the results of the DCGAN were inconsistent. This
highlights the difficulty in training GANSs that is well-documented in the literature. However, our
DCGAN was able to produce some legible data that we then ran through our strong classifier to
mixed results.

The future directions of the project would lie in improving the performance of the DCGAN and
using these results to perform transfer learning on a more sophisticated optical character recognition
problem. The DCGAN could be improved through deepening the architecture, tuning the hyperpa-
rameters, or exploring more advanced training techniques such as differential updates to the generator
and discriminator. Another (simpler) way to improve the GAN would be to simply train a more
powerful model on more data for longer. We were resource constrained and therefore limited in our
ability to train the model.

7 Contributions

Roshini developed the data pipeline for classification and the classification model. Roshini also
developed the data processing to feed GAN images into the classifier network. Avi created the
DCGAN and managed the model training using AWS. Avi also recorded the project video submitted.
Both authors contributed substantially to conceptualizing the project and debugging all facets. This
report was written by both authors jointly.



References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Bruno Ambrozio and Victor Zacchi. A Convolutional Neural Network model to predict multi-
digits over the SVHN dataset., 5 2021.

[3] Francois Chollet et al. Keras, 2015.
[4] Alex Clark. Pillow (pil fork) documentation, 2015.
[5S] Andrew Collette. Python and HDF5. O’Reilly, 2013.

[6] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. CoRR, abs/2010.01412, 2020.

[7] IanJ. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit
number recognition from street view imagery using deep convolutional neural networks, 2013.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[9] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
ndndez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357-362, September 2020.

[10] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

[11] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90-95, 2007.

[12] Gongalo Mordido, Haojin Yang, and Christoph Meinel. Dropout-gan: Learning from a dynamic
ensemble of discriminators, 2018.

[13] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019.

[15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks, 2015.

[16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans, 2016.

[17] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net, 2014.



[18] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009.

[19] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron C. Courville, and
Yoshua Bengio. Renet: A recurrent neural network based alternative to convolutional networks.
CoRR, abs/1505.00393, 2015.

[20] Sabine Wieluch and Dr. Friedhelm Schwenker. Dropout induced noise for co-creative gan
systems, 2019.

[21] NVS Yashwanth. Street view house number generation using dcgan, 2020.

[22] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146,
2016.



