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Abstract

In this paper, we explore the music generation task using the Lakh Pianoroll
Dataset (LPD). We built two models: a baseline RNN model using independent
instrument sampling and a CNN model using dependent instrument sampling.
We found that the CNN model produced better results reflecting more musical
cohesion and less randomness, with both models producing generally modern and
impressionist-sounding music.

1 Introduction

For our project, we are exploring music generation using deep learning. Given our extensive
background as musicians, we wanted to tackle the intersection between technology and music. Since
music is a universal language that so many people around the world engage in, there is considerable
attention around the potential of deep learning models to generate creative and pleasant pieces.

In this project, we experimented with both RNNs and CNNss to identify the best model architecture
for music generation. We used both independent and dependent instrument sampling and compared
their effects on the generated audio samples. Additionally, we utilized Python 3.9.10 and TensorFlow
packages in a Conda environment to implement our models.

2 Related Work

Looking at early music generation techniques, considerable work centered around Recurrent Neural
Networks (RNNs). For example, the Kotecha paper proposed a two-layer LSTM model that learned
harmonic and melodic rhythmic probabilities from MIDI files of Bach’s music [1], while the Ingale
paper used a three-layer LSTM model for generating monophonic music sequences in ABC notation

(2].

However, Convolutional Neural Networks (CNNs) have been quite promising recently. For example,
in 2016, the WaveNet model proved successful in generating speech mimicking the human voice,
synthesizing music, and generating piano music by applying dilated convolutions.

Generative adversarial networks (GANSs) have also frequently been applied to music generation.
MidiNet [3] uses Deep Convolutional Generative Adversarial Networks (DCGANSs), which generate
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multi-instrument music phrases that can be conditioned on the previous phrase and the current
phrase’s chord. Additionally, MuseGAN [4] uses multiple generators to create multi-instrument
music phrases that can be conditioned with respect to the other instruments in the same phrase.

3 Approach

3.1 Model Architectures

First, we built an RNN for our baseline model of generating multi-instrumental music. At each
time-step, we flattened the multi-instrument pianoroll data into a one-dimensional vector. Our trained
RNN then leveraged the previously learned vectors to predict the vector at the next time-step.

One challenge we ran into was that it is difficult to produce aesthetic music while preserving the
multi-instrumental nature of the track. Sampling too many notes from the mulitnomial distribution
proved to make the music sound extremely cluttered and even with just sampling 1 note per time
step per instrument, the model struggled to produce music that was complementary leading to a lot
dissonance and seemingly random sounds.

Therefore, as inspired by the WaveNet paper [5], our next experiment was to explore CNNs, which al-
low us to make the instrument samples dependent on each other. Compared to RNNs, CNNs are more
ideal for generating sequences and faster for training convolutional operations. WaveNets combine
causal filters with dilated convolutions to effectively model the long-range temporal dependencies
in audio signals. However, in order to achieve our goal of generating multi-instrumental music, we
will extend the approach outlined in the paper by building different CNNs for different instruments
(the LPD-5-Cleansed dataset contains music samples with five instruments). Since MuseGAN uses
multiple generators, we reasoned that using multiple CNNs would be more optimal for the scope
of our project. Ultimately, our CNN model was able to achieve better results due to its reliance on
dependent instrument sampling, leading to more cohesive connections among the different parts and
an overall higher aesthetic quality.

1. Baseline RNN At each time-step, we flattened the multi-instrument pianoroll data into a
one-dimensional vector. Our trained RNN then leveraged the previously learned vectors to
predict the vector at the next time-step.

2. 2D CNN For our CNN model, we take in a 5x20x128 tensor, representing the 5 instruments,
20 time steps, and 128 possible notes. We train the model on the data by having it predict the
next 20-note sequence. The model is symmetric as we want the input and output shapes to
be the same, and we chose to omit dense layers as they made the model performance worse.
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Figure 1: Our 2D CNN model architecture
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4 Experiments

4.1 Data

We used the Lakh Pianoroll Dateset (LPD) derived from Lakh MIDI dateset.[4] [6] The raw data
consists of 174,154 multitrack pianorolls. Each pianoroll is a music storing format that uses a
score-like matrix to represents a music piece. The values represent the notes’ velocities, while the
vertical and horizontal axes represent note pitch and time. We used symbolic timing so that each
beat has the same length, and a temporal resolution of 24 per beat to encapsulate common temporal
patterns. For note pitch, there are 128 possibilities in the range of C-1 to G9. To include tracks for
piano, drums, guitar, bass, and strings for generating complex music, we used the LPD-5 version of
the dataset. Finally, we used a cleansed subset of 21,245 MIDI files to standardize the time signature
to 4/4 and keep only the file with the highest confidence score for each song. All data was normalized
before being passed in as input to our models.

4.2 Evaluation method

Music quality and aesthetic are quite subjective, so we employed a blind rating evaluation of the
generated music samples performed by 10 human participants. We played 3 samples from the LPD5
dataset to get a baseline reference, then our generated RNN and CNN music camples. We asked for
ratings on a scale from 1 to 10. Our final evaluation metric for each sample was the average of the
ratings received across all the participants.

4.3 Experimental details

We trained our baseline RNN 100 epochs using AWS p3.2xlarge instance with a Deep Learning AMI
GPU PyTorch 1.11.0 (Amazon Linux 2) 20220328.

0.024 -

0.022 4

0.020 +

Loss

0.018 1

0.016 A

0.014 -
— Train Loss
0.012 1 ®st Loss

T T T T

0 20 40 60 80 100
Epoch

Figure 2: A graph of the train and test loss over each epoch for our baseline RNN model

We trained our 2D CNN model 100 epochs using an Apple M1 Macbook Pro running metal accelerated
TensorFlow. The CNN trained much faster and so we were able to use a local environment rather
than running on an EC2 instance.

With both models, we explored different sequence lengths to train on. This means selecting a
sequence length for input and having the model generate an equal length output. We found an optimal
sequence length of about 10 time steps for the RNN and 20 for the CNN. For the CNN model, many
different configurations were tried including the aforementioned Dense layers in conjunction with the
convolution layers. Ultimately, it was decided that we needed an appropriately deep convolutional
network of 4 layers and then to deconvolute the output back to its original size as output.



4.4 Results

Our RNN model was able to successfully generate three 30-second sample containing the five
instruments drums, strings, bass, guitar, and piano. After gathering a preliminary round of ratings for
the music sample from a pool of 10 participants, the average rating received was a 4.2 out of 10 for
the 3 audio samples with baseline_generated2.mp3 and baseline_generated3.mp3 understandably

receiving much poorer ratings than baseline_generated.mp3.

Our CNN model proved to produce better results due to the dependent instrumental sampling. Upon
analysis, the chords throughout the generated sample are spread out amongst the instruments, making
the music less random and more cohesive. All audio samples, which have been converted to mp3

files, can be found here.

pitch

pitch

Model Average Rating
LPDS5 Samples 9.3
Baseline RNN 1 7.1
Baseline RNN 2 59
Baseline RNN 3 5.5
Baseline RNN 4 4.7
2D CNN 1 6.9
2D CNN 2 8.4
2D CNN 3 7.9
2D CNN 4 6.7
2D CNN 5 7.1
2D CNN 6 55

Table 1: Average Ratings for the Baseline RNN and CNN models.
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Figure 3: A visualization of the generated pitches for each instrument at each time step



5 Analysis

Overall, the CNN model generally performed better than the baseline RNN model, as expected.
For the RNN’s generated samples, the highest average rating was 7.1 and the lowest average
rating was 4.7. For the CNN’s generated samples, the highest average rating was 8.4, and the
lowest average rating was 5.5. As mentioned before, the higher enjoyability of the CNN’s
generated samples is most likely attributed to its use of dependent instrument sampling, which
makes the chords at each time step more cohesive among the five instruments. The CNN also
exercises better control over not having all 5 instruments fighting for the foreground sound at all times.

Additionally, both our baseline RNN and CNN models fell short of the high average rating (9.3)
received by the LPDS5 dataset samples. This makes sense because the samples in the LPDS5 dataset
are more classical-inclined with less dissonance, which sound more familiar to the average person.
However, all of the generated samples across both models sounded quite dissonant with a slight
creepy quality. This could be because even though the model learned chords for each time step,
it does not understand cohesion among the entire piece. Therefore, the resulting audio samples
consisted of dissonant chords that were still pieced together.

We also received feedback that baseline_generated2.mp3 and baseline_generated3.mp3, as well as
cnnl.mp3 and cnn4.mp3, sounded very similar to each other. This explains the closeness in their
scores. This feedback made us realize that the generated music lacked some diversity. We would like
to investigate this issue in future work so that our model can generate more creative pieces.

6 Conclusion

We have presented a CNN multi-track music generation model, which has a conditional mechanism
to exploit versatile prior knowledge of music while using dependent instrument sampling. Our
evaluation shows that it can be a good alternative to RNNSs as the generated music samples received
higher ratings across the board.

In the future, we would like to explore GANS to see if we can improve the aesthetic quality of our
generated samples. This was used in MidiNet, a convolutional generative adversarial network for
symbolic-domain music generation that produced desirable results. [3] We would like to explore
the method of generating an entire audio clip froma. single latent vector, which allows for easier
extraction of features such as pitch and timbre. We are also interested in finding out if implementing
GANSs can solve the issue of generating similar sounding music.
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7 Contributions

All group members contributed equally. We all worked on the code, report, and video presentation
components of our final project.



