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Abstract

Traditional wireless communication beamforming techniques rely upon the re-
ception of transmitted reference signals to process wireless channel information
(amplitude, phase, delay), prior to data communication. As the usage of higher
frequencies (60 GHz above) and near line-of-sight (LOS) operation becomes more
prevalent, we investigate augmentation of traditional wireless signal processing
techniques with the usage of additional sensor (Camera, Radar) input to improve
the performance of beam prediction algorithms. In this paper, we propose and
evaluate the performance of novel Al based beam prediction algorithms in 60 GHz
wireless communication systems, using wireless reference signals, RGB camera
and Radar. Based on the analysis conducted, we conclude that joint Al based pro-
cessing of wireless signal and RGB Camera / Radar input significantly improves
the accuracy, precision, recall and F1-score of beam prediction.

1 Introduction

In the past two decades, local and wide area wireless networks have become increasingly complex, as
they offer high data rates, low latency and higher degree of reliability to users.

Over this period, multiple important trendlines have emerged: (1) Usage of higher frequencies (e.g.
28 GHz, 60 GHz) where plenty of bandwidth is available for data communication (2) Nonlinear signal
processing in baseband modems and RF front end components (3) Large amount of data generated
and available from networks devices for offline processing (4) Increasing computational power
(CPU, GPU, NPU) embedded in the devices, complemented by edge and cloud based processing (5)
Availability of additional sensors (Camera, LiDAR, Radar, Gyro, Accelerometer) in wireless devices
such as smartphones and vehicles.

Given the trendlines on availability of modem baseband and RF data, processing power and additional
complementary sensory input, a question arises as to whether one can incorporate all available
wireless and sensory input into a single unified input, and use Al algorithms to process that unified
input to achieve overall better performance.

Case in point, high frequency wireless systems (e.g. 60 GHz) frequently rely upon line-of-sight
communication and any awareness of the channel geometry (buildings, vehicles, obstacles) via
cameras, LiDAR and Radar should be considered as additional signals available at the device receiver,
to complement wireless signals being processed.

In this paper, we focus on high frequency millimeter-wave (60 GHz) wireless communication systems,
where large antenna arrays are used to generate a large number of narrow (in azimuth and elevation)
analog plus digital beams to transmit and receive signals. The data rate at a device is maximized by
picking the best possible beam from all the candidate beams transmitted by the network.
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However, finding the best beam can be a sub-optimal and inefficient process, if one only relies
on a subset of input signals (wireless signals only) using classical signal processing techniques.
Conversely, using classical signal processing on the entire input signal (including sensors) can be
computationally expensive, leading to prohibitive time for optimal beam search and/or higher power
consumption.

To tackle this problem, in this paper we propose five distinct Al algorithms for beam prediction in 60
GHz wireless communication systems using (a) mmWave wireless signals only (b) RGB Camera
based input only (c) Wireless signals plus Camera input (d) 3D complex raw Frequency Modulated
Continuous Wave (FMCW) Radar Sensor data only (e) Wireless signals plus FMCW Radar input.

2 Related Work

The state of the art on Al research and applications in wireless networks was comprehensively covered
in (3), with applications in five areas (a) Sensing Al (b) Network Al (c) Device Al (d) Medium
Access Al (e) Data Provenance Al. Our focus is on Al assisted beam prediction in 60 GHz Wireless
Communications, which falls under the broad category of Medium Access Al.

Most recently, CNNs have been used for channel state information and mmWave beamforming
processing (6)(8)(1), while DNNs have been used for channel precoding and allocation techniques
(4)(9). Additional work on Al assisted mmWave beamforming techniques can be found in (10)(7)(11).

However there is sparse published research on joint Al processing of blended data from wireless
signals and sensors (cameras, Radar) for Medium Access Al Our project attempts to tackle this
problem in a holistic manner, combining all input data from wireless baseband processing and RGB
cameras.

3 Dataset

The dataset from DeepSense 6G (2) (5) consists of 22,823 wireless 60GHz mmWave signals collected
across 9 different scenarios. These scenarios were collected from 9 different indoor and outdoor
locations across varying weather conditions and times of day, focusing on 5G vehicle-to-infrastructure
communications.

The mmWave receiver, RGB camera and Radar sensor capture data at different rates. The mmWave
receiver runs at 8Hz, RGB camera captures data at 30 frames/second (fps) while the radar sensor
captures data at 10 fps with a frequency range of 76-81 GHZ.

Given that not all scenarios have camera images and radar sensor signals, we specifically focus on
Scenarios 5/8/9 for mmWave signals plus Camera based processing, and Scenario 9 for mmWave
signals plus Radar based processing.

4 Model Architecture and Approach

4.1 Wireless Signals Only

The received wireless mmWave signal is a 64x1 real-valued vector and is used directly as the input
signal, while the labeled output is a 64x1 vector comprising of the correct beam indices.

Given that both the input and desired output can be modeled as a Nx1 vector, we pick a Deep Neural
Network (DNN) to process the data.

The mmWave signal 64x1 input vector is fed to a DNN with 4 hidden FC layers involving
(1024,512,256,128) activations, with a Softmax 64x1 output layer that indicates the probability
of each beam index. This DNN network has 763,840 parameters as shown in Table 1 and is trained
using Adam Optimization with a categorical cross-entropy loss function.

4.2 RGB Camera Only

The RGB camera input signal is a 960x540x3 volume, while the labeled output is a 64x1 vector
comprising of the correct beam indices.



Table 1: DNN Architecture - Wireless mmWave Signal Processing

Network Input Volume  Final Output Architecture Number of Parameters

DNN-mmW 64x1 64x1 FC-FC-FC-FC-Softmax 763,840

One approach would be to view this as a classical image processing problem and solve using a
ConvNet architecture (e.g. VGG-16) comprising of several CONV-POOL-ReLU layers and FC layers
towards the end. However note that the label is not an object embedded in the image, rather it’s the
index of the correct beam.

So we use a Transfer Learning technique to pre-process the RGB camera images using VGG-16 and
cascading the VGG-16 FC2 output to a new fully connected DNN, which is then trained with the
labels comprising of correct beam indices.

Concretely, we implemented a network architecture wherein the RGB camera 960x540x3 volume is
re-sized to 224x224x3 and run through VGG-16 trained on ImageNet, and extracted the 4096x1 FC2
layer prior to the output Softmax layer. Note that there are 134,260,544 parameters in VGG-16 up to
FC2 layer, as shown in 2.

This 4096x1 FC2 layer output constitutes the input to a new fully connected DNN with 4 hidden FC
layers involving (512,384,256,128) activations, with a Softmax 64x1 output layer that indicates the
probability of each beam index. This DNN network has 2,434,368 parameters as shown in Table 2
and is trained using Adam Optimization with a categorical cross-entropy loss function.

Table 2: VGG-16 plus DNN Architecture - RGB Camera Image Processing

Network Input Volume  Final Output Architecture Number of Parameters
Original VGG-16 224x224x3 1000x1 See literature 138,357,544
Modified VGG-16 224x224x3 4096x1 VGG-16 upto FC2 134,260,544
DNN-RGB 4096x1 64x1 FC-FC-FC-FC-Softmax 2,434,368

4.3 Wireless Signals plus RGB Camera

We note that this is a heterogeneous input data problem, with a 64x1 real-valued received mmWave
signal coupled with a 960x540x3 RGB camera signal. The labeled output remains a 64x1 vector
comprising of the correct beam indices.

Instead of unifying the input signal up-front, we first process RGB camera input signal as described
in previous section to get a 64x1 Softmax output, that is used as a image feature vector. This image
feature vector is further augmented by appending the 64x1 real-valued received mmWave signal, to
create a new 128x1 input vector.

This 128x1 input vector is fed to a new fully connected DNN with 4 hidden FC layers involving
(1024,512,256,128) activations, with a Softmax 64x1 output layer that indicates the probability of
each beam index. This DNN network has 763,840 parameters as shown in Table 3 and is trained
using Adam Optimization with a categorical cross-entropy loss function.

The new 128x1 input vector is to be processed by a DNN, consisting of several hidden layers followed
by a 64x1 softmax output layer that indicates the probability of best beam index, and is trained using
Adam Optimization with a cross-entropy loss function.

Table 3: VGG-16 plus New DNN Architecture - RGB Image Processing

Network Input Volume  Final Output Architecture Number of Parameters

DNN-RGB-mmW 128x1 64x1 FC-FC-FC-FC-Softmax 829,376




4.4 Radar Sensors Only

The FMCW (frequency-modulated continuous-wave) radar outputs 3D complex I/Q radar measure-
ments of dimension 4 (number of Rx antennas) x 256 (samples per chirp) x 128 (chirps per frame)
at 10 fps. This output can be pre-processed to produce 3 distinct data mappings: radar cube, range
velocity mapping, and range angle mapping.

The range angle mapping outputs the propagation range and direction (azimuth and elevation angles)
of a signal from a source point. Each data sample of the range angle mapping outputs a vector of
size 1x256x64. This is fed into a CNN that outputs a 64x1 softmax prediction of 64x1 as is shown in
Table 5.

Table 4: CNN Architecture - FMCW Radar Processing

Network Input Volume  Final Output Architecture Number of Parameters

CNN-Radar 1x256x64 64x1 PL-5(Conv2D)-Flatten-FC-FC-Softmax 2,141,334

4.5 Wireless Signal plus Radar Sensors

The wireless signal and radar sensors were initially concatenated in a fashion analogous to that of
wireless signal plus RGB camera data and it was then passed into 4 fully connected ReLU layers and
a softmax output. However this approach produced validation and test metrics that were 35-40%.

The next approach tried was to concatenate the pre-processed radar angle data with the power vectors,
but this approach put too much weight on the radar data and a lot of irrelevant details were included in
the model input. The current hypothesis is to try extracting the relevant features using convolutional
layers and combining this, as opposed to the initial softmax output or the pre-processed radar data,
might improve the model performance.

Table 5: CNN plus DNN Architecture - FMCW Radar Processing

Network Input Volume  Final Output Architecture Number of Parameters
DNN-Radar-mmW 128x1 64x1 FC-FC-FC-FC-Softmax 837,312
CNN-Radar-mmW 1x257x64 64x1 PL-5(Conv2D)-Flatten-FC-FC-Softmax 2,141,334

5 Dataset and Evaluation Metrics

Based on the different Model architectures presented in the previous section and amount of data
available, we split the data into Train/Val/Test sets as shown in Table 7.

We used batch processing (batch size = 32) during training over 200 epochs for wireless signal
processing, RGB camera processing and wireless + RGB camera processing. For radar signal
processing and wireless + radar processing, we also used batch sizes of 32 during training but it was
over 20 epochs.

Each scenario method is evaluated with a combination of metrics, namely Accuracy, Precision,
Recall and F1 Score, to take a comprehensive view of the efficacy of algorithms.

6 Results and Analysis

The results for consolidated and individual Scenarios 5, 8 & 9 are listed in Tables 8 910 11 6
respectively.

We make the following conclusions from the results:

* Using Wireless Signals alone leads to low F1 scores (0.64-0.70) from val/test set results
across all scenarios



Table 6: Training, Validation & Test Set Results - Scenario 9

Method Train/Val/Test Accuracy Precision Recall F1 score
Wireless Signals Train 0.9000 0.9144 0.8868 0.9004
Val 0.6879 0.7080 0.6795 0.6935
Test 0.6851 0.7063 0.6767 0.6912
RGB Camera Train 1.0000 1.0000 1.0000 1.0000
Val 0.5084 0.5084 0.5050 0.5067
Test 0.5159 0.5176 0.5159 0.5168
Wireless Signals plus RGB Camera Train 0.9593 0.9603 0.9579 0.9591
Val 0.9077 0.9091 0.9060 0.9076
Test 0.9012 0.9027 0.9012 0.9019
Radar Data Train 0.9917 0.9919 0.9910 0.9914
Val 0.3951 0.4009 0.3865 0.3936
Test 0.3879 0.3962 0.3862 0.3911
Wireless Signals plus Radar Data(DNN)  Train 0.9976 0.9976 0.9974 0.9975
Val 0.3831 0.3883 0.3797 0.3840
Test 0.3929 0.3951 0.3845 0.3897
Wireless Signals plus Radar Data(CNN)  Train 0.9564 0.9810 0.9228 0.9510
Val 0.3959 0.4322 0.3729 0.4004
Test 0.3963 0.0.4271  0.0.3609  0.3912

* The RGB camera network has a large variance (over-fitting), as seen from the delta be-
tween train and val/test set accuracy, precision, recall and F1 scores. The variance is very
pronounced in Scenario 5 and remains large for Scenarios 8 and 9 as well.

» Using a combination of Wireless Signals plus RGB Camera, provides the best results, as
seen from the consistent accuracy, precision, recall and F1 scores (0.86 or above) from

val/test across all scenarios

» The Radar network has a large variance (over-fitting) as seen from the delta between train

and val/test set accuracy, precision, recall and F1 scores

» Combining wireless signals with Radar input does not improve overall performance or lower

the variance

7 Potential Future Work

Based on the analysis, we recommend the following next steps as a part of future enhancements:

* Reduce variance in RGB camera processing methods (smaller network, larger dataset)

» Try different ConvNet models (e.g. ResNet50) for RGB camera image processing

* Investigate different techniques to improve Wireless signal processing in Scenario 8

* Analyze other representations of radar data (radar cube range velocity) for beam prediction

* Analyze feature extraction for radar data plus wireless signals

» Explore the combination of Camera plus Radar plus Wireless signal processing in a DNN

8 Contributions

Durga worked on creating models for the wireless signals, RGB camera data and the combination
of both signals, while Faith worked on creating models for the wireless signals, Radar input and
combination of wireless signal and Radar data.
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A Appendix

Table 7: Dataset Overview

Scenario  Dataset  Train Samples  Val Samples  Test Samples
Scenario 1 2411 1675 451 296
Scenario 2 2974 1914 607 453
Scenario 3 1487 1037 300 150
Scenario 4 1867 1248 401 218
Scenario 5 2300 1840 230 230
Scenario 6 915 653 98 164
Scenario 7 854 568 185 103
Scenario 8 4043 3234 404 405
Scenario 9 5964 4771 596 597

Table 8: Training, Validation & Test Set Results - Consolidated Scenarios 1-9

Method Train/Val/Test Accuracy Precision Recall F1 score

Wireless Signals ~ Train 0.8792 0.8955 0.8644  0.8797
Val 0.7411 0.7626 0.7254  0.7435
Test 0.7642 0.7790 0.7473  0.7628

Table 9: Training, Validation & Test Set Results - Consolidated Scenarios 5,8,9

Method Train/Val/Test Accuracy Precision Recall F1 score
Wireless Signals Train 0.8671 0.8827 0.8488  0.8654
Val 0.7439 0.7640 0.7236  0.7432
Test 0.7054 0.7224 0.6908  0.7062
RGB Camera Train 0.9347 0.9384 0.9323 0.9353
Val 0.4976 0.5012 0.4902  0.4957
Test 0.5000 0.5037 0.4951 0.4994
Wireless Signals plus RGB Camera  Train 0.9627 0.9660 0.9598 0.9629
Val 0.8472 0.8567 0.8455 0.8511
Test 0.8644 0.8674 0.8604  0.8639
Table 10: Training, Validation & Test Set Results - Scenario 5
Method Train/Val/Test Accuracy Precision Recall F1 score
Wireless Signals Train 0.8989 0.9073 0.8886  0.8979
Val 0.6652 0.6773 0.6478  0.6622
Test 0.6435 0.6476 0.6391 0.6433
RGB Camera Train 1.0000 1.0000 1.0000 1.0000
Val 0.3826 0.3843 0.3826  0.3834
Test 0.4217 0.4254 0.4217  0.4236
Wireless Signals plus RGB Camera  Train 0.9755 0.9761 0.9755 0.9758
Val 0.8826 0.8826 0.8826  0.8826
Test 0.8435 0.8546 0.8435 0.8490




Table 11: Training, Validation & Test Set Results - Scenario 8

Method Train/Val/Test ~Accuracy Precision Recall F1 score
Wireless Signals Train 0.6871 0.7141 0.6586  0.6852
Val 0.7054 0.7205 0.6510  0.6840
Test 0.6642 0.6764 0.6296  0.6522
RGB Camera Train 1.0000 1.0000 1.0000  1.0000
Val 0.5767 0.5782 0.5767  0.5774
Test 0.5877 0.5906 0.5876  0.5891
Wireless Signals plus RGB Camera  Train 0.9542 0.9542 0.9536  0.9539
Val 0.9332 0.9332 0.9332  0.9332
Test 0.9210 0.9256 0.9210  0.9233




