Solar Digital: Mapping Solar Panels using Satellite Imagery
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Abstract

Reducing energy production from carbon-emitting energy sources and moving to
clean energy sources is vital in the fight against the global climate change crisis.
A comprehensive database of the location of solar panels is important to assist
analysts and policymakers in defining strategies for further expansion of solar
energy. Building a large-scale solar project database through voluntary surveys
and self-reports is often incomplete and outdated. We have utilised high-resolution
satellite imagery to collect solar installation information by leveraging state-of-the-
art deep learning models/techniques. Our work provides an efficient and scalable
method for detecting solar panels, achieving an accuracy of 0.99 for classification
and an IoU score of 0.81 for segmentation performance.

1 Introduction

As our world is increasingly confronted with the consequences of climate change, many countries
attempt to mitigate these effects by rapidly expanding their renewable energy sources and rely less
on fossil fuels. Although solar panel production continues to increase, the integration of renewable
energy is losing momentum, and carbon emission reduction goals are falling short due to wavering
and unsupportive policy frameworks. A comprehensive database of the location of solar panels is
essential to assist analysts and policymakers in defining strategies for further expansion of solar
energy. Moreover, reducing electricity production from carbon-emitting energy sources requires
predicting both the energy demand and the energy supply from natural sources in order to optimise
the demand-supply curve.

While all the natural energy sources have inherent uncertainty due to climate/weather conditions,
quantifying solar energy prediction requires a complete database containing the accurate locations and
size information of solar photovoltaics (PV) installations, especially of distributed rooftop/residential
solar panels. Building a large-scale solar project database through voluntary surveys and self-reports
is often incomplete and outdated. However, the high-resolution satellite imagery of a country/region,
which is regularly updated (in general, annually), offers a rich data source for collecting solar
installation information by leveraging state-of-the-art deep learning models/techniques. By combining
satellite imagery and deep learning for accurate image classification and segmentation of solar panels,
we can construct the solar installation database and utilise it to make better solar energy predictions.
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Moreover, this database can also help improve the accuracy of socioeconomic analyses on solar
adoption, thus helping policymakers and solar companies make better strategies & more informed
decisions.

2 Relevant Work

Currently, the only significant work in developing solar panel databases is done by the "DeepSolar”
project team at Stanford University (Jiafan ef al., 2018)[). They conducted this study in 2018 to
build a large-scale solar photovoltaics map of the United States. While they trained the "Google
Inception V3" to classify images containing solar panels, they did not build any supervised learning
segmentation model to compute solar panel area. Instead, segmentation results were obtained by
setting a threshold to Class Activation Maps generated by aggregating feature maps learned through
the convolutional layers. Our work majorly improves upon the segmentation task by building a
supervised-learning model using state-of-the-art segmentation architectures and encoder backbones.
We also tried to improve the classification accuracy by upgrading the outdated "Google Inception
V3" model with some recent CNN architectures.

3 Dataset

Since the classification and segmentation model differs in the sample labels, we used distinct
datasets for training and testing of both the models. However, all the images from the segmentation
dataset were also used as positive images for the classification dataset. For classification model,
our total dataset contains 21,520 unique data points, which consist of satellite images at a specified
latitude/longitude coordinates. Out of this dataset, there are 16,140 negative images without a
solar panel and 5,380 positive images with a solar panel. We further had 3,716 additional positive
images from the segmentation dataset. The dataset was collected from several web resources!®/®]
and from collaboration with DeepSolar (Jiafan et al. 2018)[!. 312x312 pixel images were collected
from Google Static Map API at zoom level 21. To train the classification model, we considered a
training/dev/test split of 90%/5%/5%.

For the segmentation model, we collected a total of 3,716 satellite images along with their corre-
sponding mask labels for segmentation training. For each mask, “0” indicates the background, while
the target PV is recorded as "1". This dataset is generated by (Jiang et al., 2021) and made openly
available on the Zenodo website(”). To train the segmentation model, we considered a training/dev/test
split of 90%/5%/5% for the available 3,716 total aerial images. All images for both models were
resized to a size of 224x224 pixels for training and testing.

4 Methods

Our deep learning framework consists of a two-branch model using an image classifier in tandem
with a semantic segmentation model. With this framework, when deployed, the model will first
classify satellite images as "positive" or "negative" for solar panels. If it is labeled "positive", the
model will perform segmentation on the image to determine the solar panel area.

Our classification model uses a ResNet-34 backbone pre-trained on ImageNet. We then trained
the model using transfer learning with our satellite imagery dataset. For our training loss of the
classification model, we are using binary cross-entropy loss and we evaluate the model using binary
accuracy, precision, and recall metrics.

Binary Cross-entropy Loss: L(y,p) = —(ylog(p) + (1 — y) log(1 — p))
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In order to quantify the area of solar panels, we have used semantic segmentation on the images
that are classified as positive(i.e., containing solar panels). It is a binary segmentation model that
assigns all the pixels either label "1" (solar panel) or "0" (non-solar panel). Our model uses U-Net
architecture with ResNet-34 as the encoder backbone for segmenting solar panels in satellite images.
The training loss for our model is a combination of "Binary cross-entropy loss" and "Jaccard loss".
While the Jaccard loss tries to improve on the IoU score, the Binary cross-entropy calculates loss for
each pixel and tries to improve on labelling each pixel correctly. To evaluate the performance of our
model, we have used IoU and Fscore with a target to improve on the IoU score as much as possible.

S Experiments

5.1 Classification Model

We used an existing GitHub repository!®l to train our model using transfer learning on a ResNet-34
backbone pretrained on ImageNet. We determined that RestNet-34 outperformed other backbones,
such as VGG. Given the large dataset (21,520 images), we used a Keras DatalLoader to load each
batch (batch size = 32). Through hyperparameter fine-tuning, we determined that the classification
model performed best with an Adam optimizer with a learning rate of 1e-04. The model was trained
for 2 epochs and the best weights were saved using Keras callback APIL.

5.2 Segmentation Model

We referred to a GitHub repository!®) which allowed us to explore 4 different model archi-
tectures i.e., Unet, Linknet, FPN, and PSPNet for image segmentation. Firstly, we tested
all the four architectures available using the same encoder backbone (VGG-16) and found
that U-Net performed better than others. We also found that ResNet-34 as the encoder-
backbone with a U-Net segmentation model outperformed other backbones such as VGG,
EfficientNet, DenseNet and others. Hence, we decided to use ResNet-34 as the encoder-
backbone with U-Net model (Figure 1) as our segmentation model architecture for training.
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Figure 1: Segmentation Model Architecture

Due to a large amount of training data (3,716 images), we had to build a Keras Datal_oader function
that allowed us to load each batch (batch size = 16) lazily. We achieved the best performance for
training the semantic segmentation model using a learning rate of le-04 and the Adam optimizer. We
compiled the model by importing the encoder weights pre-trained on ImageNet while the decoder
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weights are randomly initialized. Hence, we decided to train only randomly initialized decoder
weights and not the properly trained encoder weights to avoid damaging them with huge gradients
during the first few steps of training. After fine-tuning all the hyperparameters, we trained the model
for 10 epochs and saved the best model using Keras callbacks API.

6 Results and Discussion

Because we are training a CNN model pre-trained on ImageNet with mini-batches of a large dataset,
we saw that longer training resulted in overfitting of the model to the training set. Thus, we found
that 2 epochs were enough for the classification model to reach maximum performance. The loss,
accuracy, precision, and recall metrics for our final model are presented in Table 1. We achieved 0.99
accuracy on the training, validation, and test sets.

Table 1: Classification Model Performance
H Loss Accuracy Precision Recall H

Training  0.02 0.99 0.99 0.98
Validation  0.06 0.99 0.98 0.96
Test 0.05 0.99 0.98 0.96
Model iou_score Model loss
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Figure 2: Segmentation Model Training Plots

The semantic segmentation model training plots of IoU scores and loss are presented in Figure 2.
We achieved an IoU score of 0.88 on the training set, 0.86 on the validation set and 0.81 on the test
set. Appendix 9.1 shows the predicted mask for some samples from the test set while the overall
performance of the model is tabulated in Table 1.

Table 2: Segmentation Model Performance
H Loss IoU Score FI1 Score H

Training  0.27 0.88 0.94
Validation 0.34 0.86 0.92
Test 0.40 0.81 0.85

Finally, once we obtain the predicted mask layer for segmented solar panels, its area can be calculated
using the Mercator Projection after resizing the mask to the size of the original image. Mercator
Projection accounts for the differences in length per pixel depending on the zoom and distance from
the equator; thus, the length per pixel is given by:

156543.03392 * cos(latitude * 1g5)

meters per pixels = peoom

The total area of solar panels is then computed by multiplying the number of pixels labeled as "1’ in
the mask layer by the area per pixel value.



7 Conclusions

There is a heightened urgency to solve the climate change crisis by expanding solar energy. Our work
solves this challenge by leveraging deep learning methods and implementing a two-branch model
using an ResNet-34 classifier with a ResNet-34 encoder-backbone U-Net semantic segmentation
model. We achieved an accuracy of 0.99 for classification and an IoU score of 0.81 for segmentation
performance. However, this model can have some potentially negative impacts, such as surveillance
and investigation of compliance with solar energy mandates, which would disparately impact low-
income communities.

8 Contributions

* Yash Gupta: Configured Jupyter notebook on AWS instance with GPU access; Tested
different model architectures with several encoder-backbones to find the best one; Trained
the U-Net (ResNet-34 encoder backbone) segmentation model along with the fine-tuning of
its hyperparameters, contributed to submitables (i.e., milestone, final report,etc.).

* Andy Huynh: Wrangled and exported complete latitude/longitude data for classification
dataset from multiple sources, Collected satellite images using Google Static Map API, Ex-
perimented to choose classification model backbone and refine hyperparameters, contributed
to submitables (i.e., milestone, final report,etc.).

* Ryan Dwyer: Training image augmentation code development, classification model re-
search/implementation, Deep Solar labeled dataset negotiation, contributed to submitables
(i.e., milestone, final report,etc.).
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9 Appendix

9.1 Segmentation model’s prediction on a few test samples:

True Mask Predicted Mask
Image True Mask Predicted Mask

Image True Mask Predicted Mask

True Mask Predicted Mask




