CS230

Robust Atrial Fibrillation Detection Using Deep
Neural Networks

Kelly Brennan & Noah Youkilis
kbrenn@stanford.edu & nbyouk@stanford.edu

Abstract

Automated atrial fibrillation (AF) detection aims to identify AF, the most common
sustained arrhythmia, from electrocardiogram readings. In this work, we seek
a robust implementation of such an algorithm, which would allow for efficient,
autonomous population-level screening. We therefore employ deep learning to
investigate two different automated AF detection algorithms, drawing inspiration
from existing successful networks in the literature: a convolutional neural network
and a recurrent neural network. Experimentation with network architecture and
hyperparameter tuning illuminates benefits and drawbacks to each of these algo-
rithms; however, the CNN-based architecture ultimately proves itself to be more
accurate than the RNN with a faster evaluation (forward propagation) time.

1 Introduction

Typical heart rhythm Atrial fibrilation (AFib)
Sinus node
impulse
N
\%w:

AV node

Typical heartbeat Atrial fibrillation

Figure 1: Examples of AF and regular
rhythms.

Atrial fibrillation (AF or A-Fib) is the most com-
mon heart arrhythmia that often goes undetected, and
even if it is detected, managing the condition may be
challenging. AF is an irregular and often very rapid
heart rhythm (arrhythmia) that can lead to blood clots
in the heart [Benjamin et al., 1998]. The condition
increases the risk of stroke, heart failure, and other
heart-related complications [Mayo Clinic, b]. A pre-
trained neural network which classifies AF from ECG
segments would have great utility in aiding the diag-
nosis of AF in that it could be deployed in hospitals,
doctors’ offices, at-home care, or wearable medical
devices to quickly and efficiently screen or monitor
a greater portion of the population.

In this work, we train both a recurrent neural network
(RNN) and a convolutional neural network (CNN)
to classify atrial fibrillation from electrocardiogram
(ECG) segments. The RNN operates directly on an

ECG segment, while the CNN first computes a Short-Time Fourier Transform (STFT). Both ap-
proaches are shown to be quite successful; however, after analysis summarized in this paper, we
conclude that the CNN prevails. To this end, we start by conducting a literature review, after which
we show our dataset along with preprocessing steps we take. Next, we discuss the model archi-
tectures employed, followed by results obtained from both algorithms. Finally, we conclude the
paper, motivating why we believe a CNN is ultimately a better choice for the task of automated AF

detection.

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related Work

A variety of algorithms have been introduced and explored in the literature for the purpose of AF
detection, many of which claim impressive results. For the sake of brevity, we list here a few
demonstrative case studies. Examples of successful CNN-based network architectures can be found
in [Tutuko et al., 2021, Zihlmann et al., 2017]. An end-to-end approach was even explored in [Hannun
et al., 2019]. Lastly, an RNN featuring a bidirectional LSTM was featured in [Faust et al., 2018a].
Notably, this approach does not operate directly on ECGs, but rather on RR intervals, or the time
between successive R peaks of an ECG. Such an approach enables the use of an RNN; as we will
show below, passing entire ECG sequences (in our particular case, up to 30,000 values) into an RNN
is quite costly. However, operating only on RR intervals (1) precludes the direct use of an ECG signal,
and (2) operates on only one feature of an ECG, rather than extracting a multitude of features, as is
possible with other implementations.

Additionally, a few approaches have proposed using contrastive learning as a preprocessing
step [Kiyasseh et al., 2020, Gopal et al., 2021]. Most AF detection frameworks operate with a
single (2-lead) ECG signal as the input. However, available ECG data often contains multiple signals,
obtained by placing multiple leads on a single patient. These signals all have the same label (AF
or normal sinus rhythm, NSR). Therefore, the use of contrastive learning here helps to generalize
the neural network to be able to detect AF regardless of differing lead placements, or vectors, on
a patient. While we wholeheartedly agree with this analysis, and indeed suggest it as future work,
it is beyond the scope of this paper. Instead, we treat each signal as a completely separate sample,
duplicating labels as necessary.

3 Dataset and Processing

Our original dataset is from PhysioNet [Moody, 1999, Physionet.org, 2022] and includes 63 hours of
ECG recording data from 63 subjects at a sample rate of 500 Hz, distributed roughly as 1/3 AF and 2/3
NSR. We further process this data by splitting each hour-long segment into 1 minute chucks. A-Fib
is defined as any episode lasting longer than 30 seconds, according to the American Heart Rhythm
Society [Mayo Clinic, a], so we label the data as 1 if AF is present for more than 30 seconds and 0
otherwise (the dataset contains beat annotations, which we translate into sample-level annotations).
Finally, we randomly hold 10 patients aside as a test set, in order to not spread samples corresponding
to the same patient across both train and test sets, as this would not give us a good sense of the
generalizability of any resulting network. The remaining 53 patients constitute our training data.

While originally training our neural networks, we encountered issues suggestive of a lack of data.
With only 53 subjects in our training dataset, we concluded that although we have more than enough
samples, our dataset does not contain enough diversity or positive AF examples. We added data from
the China Physiological Signal Challenge (CPSC) 2018 [Ng et al., 2018] to our training set, which
features the same 500 Hz sample rate as our original data and a roughly even distribution. This data
contains samples ranging from 6 seconds to 60 seconds in length, so zero-padding is required for
data compatibility. Because our goal was to perform well on our original dataset, i.e. full 60 second
samples, we added this additional data purely to our training set.

In summary, our training dataset includes over 5,000 samples of ECG from both the PhysioNet-MIT
and CPSC databases, while our test dataset includes data from 10 subjects from the PhysioNet-
MIT database, with distributions listed in Table 1. Note the disparity in distributions between
the training and test dataset; this is due to our adding the balanced CPSC data to the imbalanced
PhysioNet-MIT data. All data conversion and processing code is available in our GitHub repository,
https://github.com/nbyouk/cs230.

Table 1: Data distribution

Dataset # subjects # samples | Percentage samples positive
Training | 53 MIT + 2006 CPSC 5073 41%
Test 10 MIT 600 25%

3.1 Pre-processing and Zero Padding

Because the RNN doesn’t assume a specific data size or require feature extraction, raw ECG input
data may be used without preprocessing. However, the CNN requires all the input data to be of the
same size, necessitating zero-padding to account for the CPSC data.

3.1.1 RawECG

Sample input ECG signals are visualized in Fig. 2 (left) for both channels, including an example
of zero-padding. An AF and a NSR sample are shown from each dataset. Note that the CPSC data
contains more than 2 channels: we selected the first two channels for the purpose of this work, but
the use of more channels—particularly when coupled with contrastive learning—would certainly result
in a more generalizable network.

3.1.2 Fourier Transform for CNN

To extract frequency information of the signal and understand how it changes over time, we apply a
short-time Fourier transform (STFT) before passing it into our CNN. Instead of taking the discrete
Fourier transform (DFT) of the whole signal in one go, this method splits the signal into small,
overlapping pieces and takes the DFT of those pieces in a sliding window fashion. We plot this as a
spectrogram in Fig. 2 (right) to visualize the frequency, power, and time aspects of the signal. This
STFT transform completes all preprocessing required for the CNN.

|

i

sionet-MIT, AFIB: 0 Physionet-MIT, AFIB: 1

1y
\ | |
ML e

|
| ' | L J n i ko
= oy gy 0.0} Jliliin Ll
0o 25 50 75 100 125 150 00 25 50 75 100 125 150 00 25 50 75 10
CPSC, AFIB: 0 CPsC, AFIB: 1 " cpsc, AFIB: 0
1.00 1.00 | T

hysionet-MIT, AFI

’ PEEET i
| |

10

Potential (mV)

Potential (mV)

Ph
’l ‘l |l
0] YA 0 i

s ors o1
= os0 Zos0
§ o go2s| | | |

3 | i
g I IO DI D D I
0.00 Mﬁm’\{;‘w‘aﬁ‘nn%mmhﬂ%«'%“ﬂ?

|
€ 000 WIMMWMMMWHWAMMA bl
025 0

hjviny \bi .
00 25 50 75 100 125 150 00 25 50 75 100 125 150 00 25 50 75 100 125 150 00 25 50 75 100 125 150

Figure 2: (Left) Sample raw ECG data, plotted for 15 seconds. Note that the CPSC ECG signals
closely match each other; these channels measure a similar vector. (Right) Log-spectrograms of
the ECG signals. Each is a 2D graph with the third dimension represented by colors. Dark blues
correspond to low amplitude and brighter colors up through red correspond to progressively stronger
amplitudes.

4 Methods

The training framework for this project is developed in PyTorch. We train both a CNN and a RNN. In
both cases, we use the standard weighted Binary Cross Entropy loss (1), setting the weight parameter
w = 3 to account for the imbalanced data distribution in our test set. This also serves to promote
better recall-in our case, a good choice, due to the greater consequences associated with a false
negative than a false positive.

loss = —[wyn * log(o(z5)) + (1 — yn) * log(1 — o(z4,)] (D
4.1 CNN

We constructed a CNN consisting of 5 convolution/max pool layers, followed by two dense layers.
This CNN, visualized in 3, takes as input a 936 x 33 matrix, the output of the STFT discussed above.
It performs mostly same-convolutions across rows and columns; however, it focuses on max-pooling
across rows, due to the aspect ratio of its volumes. A similar strategy can be found in Zihlmann et al.
[2017], Tutuko et al. [2021]; however, we use our own specific architecture which differs from both
of these implementations. As an aside, in Tutuko et al. [2021], a wavelet transform is used instead,
and experimentation with adding some RNN layers to the CNN is also performed. However, similar
results to ours are achieved, so we deemed these additions unnecessary. We also include a dropout
layer for regularization purposes. The specifics for this CNN are outlined in Table 4 in the Appendix.

Figure 3: Convolutional neural network architecture.

4.2 RNN

For our RNN, we mainly take inspiration from Faust et al. [2018b]. As discussed earlier, however, this
approach operates on RR intervals, while we aim to construct an RNN which operates directly on an
ECG, so our approach is in this sense novel. We start with an embedding matrix with learnable weights.
To enable the embedded layer, we bin (discretize) the data into 100 groups. Upon experimentation,
we found that passing sequences of length 30,000 into an RNN is unacceptably slow; to help mitigate
this, we also down-sample our ECG data by taking only every 10th value. Despite our down-sampling,
the RNN still runs much slower than the CNN, as we discuss in Section 5. We then pass the output
of the embedding layer to the core of our RNN, a bi-directional LSTM layer. We follow the LSTM
layer with a dropout layer with a dropout probability of 0.1, followed by a dense layer to make our
prediction. A summary of our RNN can be found in 5 in the Appendix.

4.3 Hyperparameter tuning

We settled on our final network architectures and chose all values of hyperparameters heuristically.
We make no claim as to the optimality of any individual hyperparameter; the goal of this work is to
experiment with various architectures to get a feel for what would be appropriate as final architectures.
Nevertheless, we summarize some choices here. In particular, a batch size of 32 was chosen as a
compromise between compute power and a desire for generalizability, with a corresponding learning
rate in each architecture of 1 x 10~*. We settled on our final architectures (kernel sizes, number of
hidden layers, etc.) by experimenting with different values and observing performance on our test set.
We perform no rigorous hyperparameter optimization and instead leave such optimizations as future
work.

5 Results/Discussion

As shown below, our CNN model achieves 96.5% accuracy and 90.4% recall on our test set, while
our RNN model achieves 86.0% accuracy and 68.2% recall; loss and accuracy evolution during
training is presented in Fig. 4. Note that because there is so much data repetition (see Section 3), both
networks perform quite well after only one epoch. In both cases, we take the best weights achieved in
terms of accuracy on the test set as our final model; this does not correspond to the final loss/accuracy
achieved (in particular, see the sharp increase in the loss at the end of training for the RNN). Finally,
note that the RNN reports metrics per epoch starting at the end of the first epoch, and thus the plots
provided are more jagged and start at a lower loss and a higher accuracy than the CNN, which reports
intra-epoch training metrics.

The CNN clearly outperforms the RNN for this scenario. The performance summary 2 and confusion
matrices 3 provide further specific details on the performance of each model. Lastly, the CNN is a
much leaner model, requiring about 5 minutes per batch to train, as opposed to the about 21 minutes
per batch required to train the RNN.

Train Loss Train Loss

10 0.6
0.4
0.5
0.2
0.0

0 10 20 pccuracy 30 40 50 25 5.0 75 Afracy 2 5 15.0 17.5 20.0

20 30 40 50 25 50 75 100 125 150 175 200
Num epochs Num epochs

Figure 4: Optimization of our CNN (left) and RNN (right). Training loss is shown on top, while
accuracy is shown on bottom, both plotted against epoch number.

Table 2: Performance summary of our models

Metrics (Macro) | Loss Type | CNN | RNN
Train 0.994 | 0.938

Accuracy
Dev 0.972 | 0.860
. Train 0.989 | 0.920

Precision
Dev 0.961 | 0.752
Train 0.998 | 0.941

Recall
Dev 0.921 | 0.649
Trai 0.993 | 0.927
F1 Score ram

Dev 0.936 | 0.681

Table 3: Confusion matrices using best weights achieved by each model.

CNN Prediction outcome RNN Prediction outcome
P n total P n total
P | 143 11 154 P | 103 52 155
actual actual
value value
n |6 440 446 n |32 413 445
total 149 451 total 135 465

6 Conclusions/Future Work

This work shows that a fairly straightforward implementation of both a CNN and a RNN can produce
good classification results of atrial fibrillation. In our experimentation, the CNN explored in this paper
produces better classification results with a faster run-time than the RNN, leading us to conclude
that it is the better choice for this particular task. Future work in this area includes implementing
contrastive learning with the multiple ECG signals as discussed in Section 2 to pre-train the model
and increase generalizability. Furthermore, for the RNN, various feature extraction techniques (such
as a peak detector for computing R-R intervals) could be used to pre-process the data before feeding
it to the RNN, which would increase not only its viability but hopefully its accuracy, allowing it
to compete with the CNN. A further step would be to expand these neural network architectures
to classify other arrhythmia types, changing perhaps from a sigmoid binary classification output to
either a softmax output or a vector sigmoid output (the latter allowing for multiple classification),
making use of transfer learning.

Code

All code is contained in our https://github. com/nbyouk/cs230, including all data processing,
training, weights, and results. This codebase is based on code within the publicly available repository
https://github.com/cs230-stanford/cs230-code-examples.

Contributions
Both authors worked collaboratively on much this project. Greatest individual contributions are
summarized below. Credit also goes to Joseph Sullivan (Kestra Medical Technologies), who

evaluated all of the annotations for the PhysioNet-MIT dataset.

—

sﬁ

Kelly Brennan (kbrenn@stanford.edu) handled data preprocessing for the
CPSC dataset, conducted much of the literature review, ran the models for testing
and evaluation, and attempted an implementation of contrastive learning.

Noah Youkilis (nbyouk@stanford.edu) handled data preprocessing for the
PhysioNet-MIT dataset, and was responsible for the implementation of both
neural networks.

Appendix 1: CNN implementation details

Table 4: CNN architecture

Layer Input dimension | # channels Kernel size Output volume
Input 936 x 33 1 . =
Convl 936 x 33 8 (5,5) same 936 x 33
MaxPooll 936 x 33 8 2,1) 468 x 33
Conv2 468 x 33 16 (3,3) same 468 x 33
MaxPool2 468 x 33 16 2,1) 234 x 33
Conv3 234 x 33 16 (3,3) *padding=(0,1) 232x 33
MaxPool3 232x 33 16 2,1) 116 x 33
Conv4 116 x 33 32 (3,3) same 116 x 33
MaxPool4 116 x 33 32 2,1) 58 x 33
Conv5 58 x33 32 (3,3) same 58 x33
MaxPool5 58 x33 32 2,1) 29x 33
Flatten 29x 33 - - 30,624
ReLU 30,624 - - 30,624
Dropout (0.5) 30,624 - - 30,624
Dense 30,624 - - 1000
ReLU 1000 - - 1000
Dense 1000 - - 1
Sigmoid output 1 - - 1

Appendix 2: RNN implementation details

Table 5: RNN architecture

Layer Input dimension | Output dimension
Input length (max 3000) =
Binning length length
Embedding length length x 100
Bi-directional LSTM length x 100 length x 400
MaxPool1D length x 400 400
Dropout 400 400
Dense 400 1
Sigmoid output 1 1

References

E. J. Benjamin, P. A. Wolf, R. B. D’ Agostino, H. Silbershatz, W. B. Kannel, and D. Levy. Impact of
atrial fibrillation on the risk of death: the framingham heart study. Circulation, 98(10):946-952,
1998.

O. Faust, A. Shenfield, M. Kareem, T. R. San, and H. Fujita. Automated detection of atrial fibrillation
using long short-term memory network with rr interval signals. Computers in Biology and Medicine,
102:327-335, 2018a.

O. Faust, A. Shenfield, M. Kareem, T. R. San, H. Fujita, and U. R. Acharya. Automated detection of
atrial fibrillation using long short-term memory network with rr interval signals. Computers in
biology and medicine, 102:327-335, 2018b.

B. Gopal, R. W. Han, G. Raghupathi, A. Y. Ng, G. H. Tison, and P. Rajpurkar. 3kg: Contrastive
learning of 12-lead electrocardiograms using physiologically-inspired augmentations. 2021. doi:
10.48550/ARX1V.2106.04452. URL https://arxiv.org/abs/2106.04452.

A. Hannun, P. Rajpurkar, M. Haghpanahi, G. Tison, C. Bourn, M. Turakhia, and A. Ng. Cardiologist-
level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural
network. Nature Medicine, 25:65-69, 2019.

D. Kiyasseh, T. Zhu, and D. A. Clifton. CLOCS: contrastive learning of cardiac signals. CoRR,
abs/2005.13249, 2020. URL https://arxiv.org/abs/2005.13249.

Mayo Clinic. 2017 hrs expert consensus statement on catheter and surgical ablation of atrial
fibrillation. section 2: Definition, a. https://www.heartrhythmjournal.com/article/
S1547-5271(17)30590-8/fulltext#secsectit1le0020.

Mayo Clinic. Atrial fibrillation: causes and symptoms, b. https://www.mayoclinic.org/
diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624.

G. Moody. Mit-bih normal sinus rhythm database. mit-bih normal sinus rhythm database v1.0.0,
1999. https://www.physionet.org/content/nsrdb/1.0.0/.

E. Y. K. Ng, F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He, and
J. Li. An open access database for evaluating the algorithms of electrocardiogram rhythm and
morphology abnormality detection, 2018.

Physionet.org. Mit-bih atrial fibrillation database v1.0.0, 2022. https://physionet.org/
content/afdb/1.0.0/.

B. Tutuko, S. Nurmaini, A. E. Tondas, M. N. Rachmatullah, A. Darmawahyuni, R. Esafri, F. Firdaus,
and A. I. Sapitri. Afibnet: an implementation of atrial fibrillation detection with convolutional
neural network. BMC Medical Informatics and Decision Making, 21(1):1-17, 2021.

M. Zihlmann, D. Perekrestenko, and M. Tschannen. Convolutional recurrent neural networks for
electrocardiogram classification, 2017. URL https://arxiv.org/abs/1710.06122.

