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Abstract

Skin-friction and heat transfer are the two primary quantities of engineering interest
for high-speed flight vehicles. Direct numerical solution of the compressible Navier
Stokes equations can be utilized to predict the heat flux and wall stress in these flight
systems, but presently, these calculations are exceedingly intractable on even the
largest supercomputers. Therefore, the current study seeks to evaluate the feasibility
of combing a traditional high-speed flow physics solver with deep learning to obtain
accurate predictions of shear stress and aerodynamic heating for aerospace vehicles
at a significantly reduced computational expense. Both traditional feedforward
networks, as well as deeper residual networks, are considered in the present study,
with both architectures demonstrating promise for instantaneous prediction of
heat flux and wall stress for coarse-grained calculations of turbulent hypersonic
boundary layers.

1 Introduction

The formation of boundary layers, which can be characterized as near-wall regions dominated by
viscous effects, directly leads to skin-friction drag, and in the case of hypersonic flight, kinetic
energy dissipation in the boundary layer is responsible for aerothermodynamic heating. Moreover, in
hypersonic flight, the flow over the aircraft often involves the formation of shock waves, as well as
the onset of turbulence in the boundary layer, yielding a significant increase in heating, as well as
corresponding fluctuations in temperature, velocity and pressure [2, 18]. With turbulent boundary
layers developing on the fuselage of high-speed flight vehicles, efficient design of thermal protection
systems and vehicle aerodynamics requires the accurate numerical simulation of hypersonic boundary
layers at a feasible computational cost. Early attempts at reduced-order modeling of high-speed
turbulent boundary layers were performed by [7, 8, 16], using the Reynolds-averaged Navier-Stokes
equations (RANS), but only mixed success has been achieved with this methodology. Indeed, recent
studies [1] have demonstrated that the RANS approach fails to accurately predict both heat transfer
and skin friction for turbulent boundary layers in the high-Mach number regime, which is the focus
of the current study. Recently, however, data-driven techniques, including deep learning, have been
utilized [10, 12, 20] to model incompressible turbulent flows in which density, viscosity, and thermal
conductivity variations are negligible. The pioneering study of [20] applied deep learning to the
reduced-order technique of wall modeling [3, 4], advancing a coarsened Navier-Stokes solution in
time with the trained neural network providing the flux boundary conditions. The current work seeks
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to extend the work of [20] by developing a deep-learned wall model for turbulent hypersonic boundary
layers, for which the assumption of incompressibility is no longer valid. As such, the ultimate goal of
the present study is to develop a neural network that can interpret a coarse/under-resolved numerical
solution of a compressible boundary layer and output a corrected heat flux and wall stress, thereby
reducing the computational cost relative to a fully-resolved direct numerical simulation.

2 Pre-Processing

The true labels, or the ground truth values of the heat flux and wall stress values for each boundary
layer can be obtained directly from the DNS database described in Table 1. To mimic the numerical
procedure involved in simulating coarse grained calculations of turbulent flows, we have filtered and
downsampled the true solution. In this current work, the filtering procedure has been performed using
a box filter with three vanishing moments [19]. Then, the filtered and downsampled data is accepted
as an output of a coarse calculation on which one can train, develop, and evaluate a neural network.
The workflow of pre-processing the boundary-layer data is as follows:

By definition, a lower fidelity simulation does not resolve all of the smallest flow features, and
instead seeks only to predict large-scale behavior. To generate a proxy for low-fidelity fields, we
have undersampled (by up to 8 times in each spatial dimension) and then explicitly filtered the
collected DNS fields. These fields will hereafter be referred to as LES (Large-eddy simulation) fields,
owing to the fact that all fine-grained flow structures have since been eliminated. For reference, the
computational cost associated with calculating a coarse-grained solution with this resolution would
be 1000x less expensive relative to the fully-resolved direct numerical simulation. Further details on
coarse-grained (LES) calculations can be found in [6].

Selected quantities from the LES fields are then chosen as input to the neural network (examples
include filtered velocity and temperature fields and their gradients in the three coordinate directions,
and positional information for the relevant scalar fields). In total, then, the dimension of the input
vector is presently 55. The two labels for each example are the true wall stress (7,,) and heat flux
(@) from the fully-resolved DNS.

Once this filtering procedure is completed, multiple LES fields (resulting from different DNS fields
and extent of filtering) are concatenated and shuffled together to form multiple mini-batches. This
shuffling ensures that each gradient descent step during training is informed by both coarse and
relatively fine calculations at a variety of Reynolds and Mach numbers, accelerating the training
process.

3 Dataset

A high-fidelity data set of direct numerical simulations (DNS) has been aggregated for high-speed
turbulent boundary layers: these boundary layer calculations fully resolve the compressible flow
physics, and therefore their heat flux and shear stress predictions can be considered as a ground
truth. Moreover, the database is comprised of numerous large-scale simulations with varying physical
parameters, such as wall temperature (hot or cold wall relative to overriding flow), flight velocity
relative to the speed of sound (Mach number), and surrounding medium viscosity (Reynolds number).
In this section, visual examples (contours, ref. to Fig.1) are provided for the raw DNS streamwise
velocity and temperature fields. Both large and small scale physical features (streaks) are strikingly
present in these fields. We have also provided an example of the filtered and coarse grained LES
fields for comparison (ref. Fig.2). It is also apparent that these coarse grained flow fields lack most of
the small scale structures in comparison to DNS fields. The final database of pre-processed fields
contains 5400 mini-batches, with 256 examples per mini-batch. The labels for each mini-batch
correspond to the wall stress and heat flux from the direct numerical simulation. For the present
study, 55 features from the coarsened boundary layer fields were used as input to the neural networks,
corresponding to the position, velocity, temperature, pressure, density, viscosity and conductivity at
five near-wall locations in the coarsened boundary layer fields. While 3600 mini-batches are taken as
training data, both the development and test data sets are each comprised of 900 mini-batches.



Case Name Case Purpose Re Ma T/ Tz

DN Sy, Training Set 1.5 x 10° 5.84 0.25
DN Sps Training Set 1.0 x 10* 5.00 0.20
DN Sps Training Set 2.0 x 10* 5.00 0.60
DN Sp4 Training Set 1.5 % 10° 6.00 0.25
DN Sps Training Set 1.0 x 10* 7.00 0.20
DN Sy Training Set 2.0 x 10* 7.00 0.30
DN Sy; Training Set 4.0 x 10* 7.00 0.30
DN Sos Test/Dev Set 1.5 x 103 7.00 0.20
DN Sy Test/Dev Set 3.0 x 10* 11.00 0.30

Table 1: A summary of all the DNS databases used for preprocessing data, which was then fed to the
neural network in this study. Note that Re, Ma, T, /Ty, are the Reynolds number, Mach number
and the ratio of wall to adibatic-wall temperatures respectively. The test and dev sets were chosen to
share the highest Reynolds and Mach numbers for providing the network unseen and challenging
cases, and for fair comparisons w.r.t. existing physics-based models (ref. to the appendix for more
details).
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Figure 1: Visualization of a near wall, wall parallel plane of a high fidelity simulation (a) velocity
and (b) temperature fields.
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Figure 2: Visualization of the same wall parallel plane as Figure 1, for a filtered, low fidelity
simulation (a) velocity and (b) temperature fields.

4 Technical Approach

The inherent symmetry between heat flux and shear stress in continuum compressible gas dynamics
(in that both the quantities are first order derivatives of the primary flow variables like velocity, density
and temperature) allows use of a multi-task deep learning architecture. Consequentially, feedforward
and residual neural networks have been the primary architectures considered in this study. As we are
interested in quantifying the error in this regression problem, the loss function for training the neural
network is chosen to be the average of the Euclidean norm between predicted and true output wall
stresses and heat fluxes across the training examples. Mathematically, for a set of m examples, this is
equivalent to
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where 7 is the cost function, 7,, q,, are the wall stress and heat fluxes respectively. The subscript,
DN s, and the hat,”, represent true and predicted label quantities respectively. It should be emphasized
that here ‘m’ refers to the number of examples per mini-batch. The optimizer employed for the



current study is the Adam algorithm with weight decay, as implemented by default in PyTorch [13]:
Wy = W1 —ymy/ (Vor +€) )
ve = (Beve—1 + (1 — B2)g7) /(1 — B3)
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where the subscript ¢ refers to the iteration number, g is the gradient of the cost function with respect
to W, A is the weight decay value, 7 is the learning rate, and € is merely a small parameter to avoid
division by zero, taken to be 1 x 10~ for the current study. The hyperparameters of 3; and 32 were
likewise held constant at 0.900 and 0.999, respectively. The first architecture considered in the present
study is the standard feedforward neural network, consistent with the approach of [20]. Indeed, the
present study has considered the exact architectures (see Table 4 in the Appendix) from [20], training
those networks on the more challenging compressible boundary layer problem. Additionally, the
present study has also considered deeper neural networks, for which the even-numbered layers are
connected by skip connections. All networks considered in the present study have a linear output
layer, whereas all other activation functions are taken to be Leaky Rectified Linear Units (ReLU).
The code developed for the current study can be found using the GitHub link placed above. Finally,
Table 3 in the Appendix contains the exact configurations in terms of neurons per layer, as well as the
hyperparameters explored for the present study. Learning rate, number of training epochs, magnitude
of weight decay, neurons per layer, and number of layers were all varied across the different neural
networks for the present study.

5 Results

A summary of the results from the present study are included in Table 2, indicating the training,
development, and test errors associated with each architecture and choice of hyperparameters. Let us
define the error metric as A
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where é denotes the prediction of a quantity by the neural network while £ denotes the corresponding
label. Therefore, the error with respect to heat flux is defined as E(q,, ), which avoids singularities in
the case of adiabatic boundary layers. The expression for wall stress error is an analogous expression,
corresponding to E(7, ). In comparing the relative errors of the neural networks in Table 2, which are
arithmetically averaged across all relevant examples, it becomes clear that both the relatively shallow
networks of [20], as well as the deeper networks with skip connections, perform well in predicting
the heat flux and wall stress, given the right combination of hyperparameters. In particular, both
N Nyg and N N1 perform quite well across the training, development, and test sets, with errors for
both heat flux and wall stress in the vicinity of 30 percent. The evolution of the cost functions vs.
epoch during training is included in the Appendix for N N;5. Indeed, though the errors associated
with N Nyg are slightly improved relative to N N12, whose was configuration was taken from [20],
the computational expense for the latter model is dramatically smaller. As such, for a practical fluid
mechanics calculation, N N15 would most likely be the preferable model. In comparison with the
errors typical of traditional wall models (see the Appendix), most of the neural networks in the
current study are performing quite well. Relative to traditional wall modeling techniques from the
fluid mechanics literature, the networks trained in the present study obtain slightly higher errors for
adiabatic cases, but for boundary layers with significant heat transfer, all of the deep learning models
developed in the present study are competitive, with the traditional wall models’ errors exceeding, in
certain cases, 80 percent and 300 percent for heat flux and wall stress, respectively.

3

Moreover, the relatively consistent performance of the neural networks across training and dev/test
sets is particularly admirable since the dev/test sets are comprised of Mach and Reynolds number
combinations unseen in training. For example, the highest Mach number seen in training is 7, but
profiles from a Mach 11 boundary layer simulation constitutes approximately half the training/dev
examples. Therefore, most of the neural networks are generalizing quite well, particularly those
which employed weight decay during training, indicating the regularizing effect is significant for the
present problem. In evaluating the relative performance of the different models, it would also seem
that a learning rate between 0.001 and 0.005 is optimal for the current data and choice of mini-batch



size, while the best performance is obtained when training for a duration between 20 and 30 epochs
to minimize overfitting (plots provided in the appendix). Contours of heat flux and wall stress labels
from the test set, juxtaposed with the corresponding predictions from the deep-learned models, are
included in the Appendix. From inspection, the predicted contours of heat flux and wall stress bear
appreciable resemblance to the respective DNS contours.

Network code  Training Training Dev. Error Dev. Error  Test Error Test Error

Error (7,)  Error ()  (Tw) (qw) (Tw) (qw)
NNo1 0.28 0.23 0.34 0.27 0.34 0.27
NNys 0.43 0.58 0.52 0.71 0.52 0.71
NNy; 0.46 0.26 0.42 0.33 0.42 0.33
NNoy 0.68 0.23 0.78 0.30 0.78 0.31
N Nys 0.36 0.29 0.32 0.33 0.32 0.33
N Nog 0.27 0.26 0.30 0.34 0.30 0.35
NNz 0.32 0.29 0.44 0.32 0.44 0.31
N Nos 0.33 0.25 0.38 0.39 0.39 0.40
NN 0.27 0.24 0.32 0.32 0.32 0.32
NNi 0.38 0.23 0.34 0.32 0.34 0.32
NN 0.30 0.26 0.34 0.36 0.34 0.36
NDNi» 0.26 0.25 0.30 0.32 0.30 0.32
NNi3 0.30 0.24 0.57 0.42 0.57 0.43

Table 2: A summary of the training, dev. and test set errors in the prediction of wall stress and heat
fluxes for all the neural networks considered.

6 Conclusion/Future Work

In conclusion, the present study has identified a relatively shallow a feedforward network, N Ni,,
as well as much deep network with skip connections, N Ny, that accurately predict the heat flux
and wall stress induced by a turbulent hypersonic boundary layer, given a coarse-grained solution
field. Relative to traditional wall-modeling techniques, the deep-learned models of the current
study perform quite well in the case of high Mach number boundary layers with significant heat
transfer. Future work will primarily entail gathering more DNS data for hypersonic flows, especially
from flow over more complex geometries that bear a stronger resemblance to realistic flight vehicle
configurations. Furthermore, while the current study focuses on a priori analysis of neural networks
on coarsened DNS calculations, future work will pursue a posteriori calculations in which the neural
networks provide flux boundary conditions to advance wall-modeled solution in time, as was pursued
in [20]. Likewise, pending the performance of the current architectures for more complicated flows,
more sophisticated networks such as Neural ODE’s [14, 5, 15, 11] may be considered, as well.
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9 Appendix

9.1 Description of the Network Architecture

Network code  Neurons per Layer Learning No. Weight
Rate (o) epochs Decay
ratio
N Ny 55, 40x6, 20x6, 10x8, 2 0.001 25 0.10
N Noa 55, 40x10, 20x10, 10x10 0.001 40 0.50
N N3 55, 40x10, 20x10, 10x10 0.01 25 0.01
N Noy 55, 40x4, 20x4, 10x4, 2 0.01 25 0.01
NNys 55,80x4,60x4,40x4,20x4,10x4,2 0.01 25 0.01
N Nog 55,80x2,60x2,40x2,20x2,10x2,2 0.001 35 0.10
N Ny 55, 100x2, 80x2, 40x2, 20x2, 10x2,2 0.01 25 0.10
N Nos 55, 100x2, 50x2, 25x2, 12x2, 2 0.01 20 0.01
N Nyg 55, 120x2, 100x2, 80x2, 60x2, 40x2, 20x2, 0.005 30 0.01
12x2,2
NN 55, 60x6, 30x4, 20x2, 10x4, 2 0.005 25 0.01

Table 3: A summary of the residual neural networks considered. For the configuration section, note
that X x Y here refers to a layer with X neurons repeated Y times.

Network code  Neurons per Layer Learning No. Weight
Rate (a) epochs  Decay
ratio
NNy 554,222 0.005 20 0.01
NNj, 55,6,4,3,3,2 0.005 20 0.01
N N3 55,8,8,6,4,4,2 0.005 20 0.01

Table 4: Feedforward neural network architectures considered in the present study from [20]

9.2 Errors in the prediction of wall shear stress and heat flux from existing wall models

The existing physics based wall models [9, 17] for compressible flows have been shown to work
accurately in simple cases, where the effects of compressibility were rather minimal [9]. However, in
the case of a hypersonic flow, the errors in the correct prediction of the wall stress and heat fluxes are
not negligible, and as a result, these models can not be used in ongoing research of such flows. Figs.
3, 6 present the errors (quantified as the relative Ly norm of the difference between the modeled and
true output values, normalized with the true values) from the existing models for both adiabatic (no
heat transfer from/to the wall) and diabatic (allows heat transfer) boundary layer. It is very apparent
that as — B, or the magnitude of wall heating increases, these existing state of the art physics inspired
models perform very poorly. In this light, the results presented in this work are an improvement over
the existing wall models, in that even for Mach 11 turbulent flow, with very significant wall heating,
the deep-learning based model can perform up to reasonable accuracy.

9.3 Training loss as a function of epoch
Cost function vs epoch number for the the neural network N N5 is provided in this section. Since

the cost appears to have approached an asymptote, additional training was not pursued in order to
avoid any over-fitting.
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Figure 3: Errors in the prediction of (a) wall shear stress and (b) heat flux for an adiabatic (does not
allow heat transfer from/to the wall) boundary layer, as a function of the normalized (by the local
wall quantities such as density, heat conductivity, temperature and velocity)-true heat flux. These
figures have been modified from the ongoing Ph.D. thesis work of Kevin P. Griffin at CTR, Stanford.
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Figure 4: Errors in the prediction of (a) wall shear stress and (b) heat flux for a diabatic (allows heat
transfer) boundary layer, as a function of the normalized (by the local wall quantities such as density,
heat conductivity, temperature and velocity)-true heat flux. These figures have been modified from
the ongoing Ph.D. thesis work of Kevin P. Griffin at CTR, Stanford.
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Figure 5: Cost function, averaged across batches, vs. epoch for N Ny



Figure 6: Heat flux (a.) and wall stress (b.) from the direct numerical simulation results for the Mach
11 boundary layer.

Figure 7: Heat flux (a.) and wall stress (b.) for the Mach 11 boundary layer, as predicted by the
N Nog
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Figure 8: Heat flux (a.) and wall stress (b.) for the Mach 11 boundary layer, as predicted by the
NNi3



