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Abstract

Accurate forecasts for electricity demand and associated greenhouse gas emissions
can help inform the operation of electric grids, resource planning for utilities, and
consequently strategies for demand response. Understanding the generation mix
of the electric grid at a region level and resulting GHG emissions is increasingly
important in light of climate change, as the predictions will be used by grid
operators and policymakers to take effective actions. In this project, we trained
a separate model for each generation type in the California grid that predicts
proportion of total demand one day in advance using electric grid and weather data.
We then use the predicted fractional generation mix to estimate GHG emissions.
Our results indicate that deep learning based approaches can be used effectively to
predict the generation mixes of the grid, especially in comparison to simple time
series based machine learning approaches, like ARIMA. Despite our individual
models performing better than ARIMA, the compounding forecasting errors of each
separate generation type led to some inaccuracies in GHG emission prediction.

1 Problem Description

It’s well established that elevated greenhouse gas (GHG) concentrations in the atmosphere, such
as COg, are trapping heat and accelerating climate change [1]. After transportation, electrical
generation is the second-largest contributor to GHG emissions in the United States [2]. Since most of
the emissions related to electricity come from combusting coal and natural gas, understanding the
electricity generation mix is the key component of predicting GHG emissions.

For both grid operators and policy makers, predicting GHG emissions on short timescales can be quite
useful. For example, understanding when emissions will be highest would facilitate demand response,
i.e. load shedding and shifting to reduce this emissions peak. Additionally, many municipalities use
time-of-use (TOU) pricing to incentivize consumers to shift usage away from peak periods. However,
real-time pricing (RTP) has been found to be far more effective at reducing GHG emissions than
TOU [3]. High fidelity, high frequency emissions forecasts could be used to determine RTP rates.

In this project, we predict fractional generation mixes in the California grid one day in advance
using a recurrent neural network (RNN) trained on electricity and meteorological data. Finally, we
combine those fractional generation mixes with emissions factors to estimate the GHG emissions due
to electricity generation [4].
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2 Related Work

Due to the importance of accurately predicting greenhouse gas emissions from electrical generation,
there have been numerous recent studies in the area. Earlier work employed non-ML techniques, like
regressing sub-regional emissions from known regional-level emissions [5]. More recent analyses
have compared various methods to find that deep learning approaches achieved the most accurate
prediction [6], [7], [8]. While employing an Autoregressive Integrated Moving Average (ARIMA)
model, Leerbeck et al. found that LASSO regularization was key to reducing overfitting, selecting 30
predictors from a possible 473 [9]. In a recent review article, Lipu et al. found that hybrid models,
i.e. an ML model incorporating physical models (like solar radiation or wind speed) improved the
accuracy of renewable energy generation predictions [10].

3 Dataset

We collected hourly electricity operating data, including actual demand, net generation, and generation
mix of the grid for 2018 to 2022 from Energy Information Administration (EIA) Open Data Platform
[11]. Weather data is especially important to renewable energy prediction [10], so we augmented the
EIA data with temperature, wind speed, and precipitation, solar radiation, and other data over the
same time period from CIMIS [12]. Sample data entries are available in the Appendix. We used the
first 3 years as training data and the last year was split in half for development and testing.

The code used to merge the data files can be found in parse_data.ipynb. Each EIA data point
was a separate CSV file, so the code first concatenates all the separate files into a single array with
each feature as a column. It then loops through each weather data file (one per weather station) and
unpacks the available features, prepending the station name to the column name. One challenge was
converting between timezones, as EIA data was in UTC and CIMIS data in PST.

Since greenhouse gas emissions per kilowatt hour is dependent only on the proportion of each
generation type, we created a "Demand Ratio" version of the EIA dataset which divided each column
by the total grid demand before dropping the demand column. We compared the performance of the
model using this version of the data to the performance of the model with raw data. To deal with
missing entries, an additional pre-processing step of replacing null values with zero was undergone,
as recommended for LSTMs [14].

4 Methods

We explore recurrent neural networks to minimize the forecast error while training our models after
pre-processing, cleaning and standardizing the dataset. RNNs are designed to recognize patterns in
sequences of data, such as time series. The recurrent layer in simple RNN optimizes three parameters:
weight for input, weight for hidden layer and bias based on a modified version of backpropagation
which includes the unfolding of time to train the weights. We also explored some specific RNNs
such as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) to learn long-term
dependencies. Finally, we selected the best model for each generation type based on RMSE to
produce an ideal "mix-and-match" model. We compared these results to AutoRegressive Integrated
Moving Average (ARIMA), a common modeling approach for time series data, as a baseline.

4.1 Grid Search

We used a grid search to select the best model architecture and hyperparameters. To limit the search
space, the search was performed in 3 batches. First, we investigated learning rate, number of neurons
per layer, and model type (see Figure 1). We then selected the three best models from that batch
according to development set loss before tuning their regularization method and penalty. Finally, we
chose the loss and activation functions for these three models. Table 1 shows the 3 best performing
models found via grid search. The full search space can be found in Table 2. During exploratory
analysis we investigated adding more layers to the network, but in all cases that led to worse results
on the development set due to overfitting.



Table 1: Three best performing models by development set loss found via grid search

Network Type | Learning Rate | # Neurons | Regularization Method | Regularization Penalty/ | Loss Activation
Dropout Rate Function | Function

LSTM 0.01 24 L1 0.00001 Huber tanh

GRU 0.001 48 Dropout 0.8 MAE tanh

LSTM 0.01 72 Dropout 0.8 Huber tanh

Table 2: Grid search space
Network Type Learning Rate | # Neurons | Regularization Method | Regularization Penalty/ | Loss Activation
Dropout Rate Function | Function

LSTM, LSTM w/ atten- | 0.00001-0.01 24-144 L1, L2, and Dropout 0.00001-0.1 /0.2-0.8 Huber, tanh, relu, and
tion layer, GRU, and MAE, and | sigmoid
GRU w/ attention layer MSE

4.2 Model Training and Selection

Once the grid search was complete, we trained the three best performing models on each of the 8
generation types. For each model, we tried 3 sets of weather data: 1) no weather data; 2) weather data
from a single station (Gilroy, as it is centrally located); and 3) weather data from 6 stations located
close to renewable generation sites ("All Weather"). We also experimented with "Demand Ratio"
EIA data vs. unprocessed EIA data, for a total of 144 trained models (3 models x 8 generation types
x 3 weather datasets x 2 EIA datasets).

5 Results

5.1 Generation Prediction

For each of the 144 trained models, we predicted on the test dataset and evaluated using RMSE. Table
3 shows the results when averaging across generation types for every combination of architecture,
weather data, and electricity data. Referring to Table 3, we can observe that "Demand Ratio" data
with 72-LSTM architecture is common for the best models. Our "mix-and-match" model, which was
created by selecting the best architecture and input data for each generation type, outperforms an
ARIMA model trained for each generation type as depicted in Table 4.

Predicted versus actual solar generation for 72 hours in March 2022 may be seen in Figure 2. Whether
or not meteorological was beneficial depended on generation type. For example, solar radiation
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required weather data due to the diurnal pattern of the sun, while natural gas predictions were most
accurate with no weather data (likely because superfluous data led to overfitting).

Table 3: Average RMSE across generation types for different scenarios

Data Model Architecture | Weather RMSE
Non-processed | Baseline-ARIMA No-weather | 0.844
Non-processed | 24-LSTM All-weather | 2.211
Non-processed | 48-GRU All-weather | 2.236
Non-processed | 72-LSTM All-weather | 2.164
Non-processed | 24-LSTM Gilroy 2.215
Non-processed | 48-GRU Gilroy 2.209
Non-processed | 72-LSTM Gilroy 221
Non-processed | 24-LSTM No-weather | 2.212
Non-processed | 48-GRU No-weather | 2.201
Non-processed | 72-LSTM No-weather | 2.182
Demand Ratio | 24-LSTM All-weather | 0.573
Demand Ratio | 48-GRU All-weather | 0.107
Demand Ratio | 72-LSTM All-weather | 0.088
Demand Ratio | 24-LSTM Gilroy 0.518
Demand Ratio | 48-GRU Gilroy 0.233
Demand Ratio | 72-LSTM Gilroy 0.092
Demand Ratio | 24-LSTM No-weather | 0.279
Demand Ratio | 48-GRU No-weather | 0.126
Demand Ratio | 72-LSTM No-weather | 0.091

Table 4: Best architectures and their RMSE for different generation types

Generation Type | Best Model RMSE | RMSE ARIMA
Coal DemandRatio-AllWeather-72LSTM | 0.0037 | 0.775
Hydro DemandRatio-NoWeather-72LSTM | 0.045 0.812
NaturalGas DemandRatio-NoWeather-72LSTM | 0.146 0.589
Nuclear DemandRatio-AllWeather-48GRU 0.04 0.521
Petrol DemandRatio-AllWeather-72LSTM | 0.002 0.974
Solar DemandRatio-Gilroy-72LSTM 0.265 0.674
Wind DemandRatio-NoWeather-72LSTM | 0.093 0.997

5.2 Emissions Prediction

To simulate a real-world deployment scenario for our best performing "mix-and-match" model, we
converted generation predictions into carbon emissions predictions. Specifically, we predict carbon
emissions on a per kilowatt-hour (kWh) basis. Once the fractional grid generation mix was predicted,
the California Air Resources Board (CARB) emissions factors were then used to determine the

resulting grams of CO2 emitted per kilowatt-hour of electricity consumed at a certain point in time.

The CARB emissions factors may be seen in Table 5.

Table 5: CARB Emissions Factors by Generation Type [4]

Generation Type | Petroleum Ié:;ural Coal Nuclear | Biomass | Hydro Geothermal | Wind IS)(\)/lar
Emissions Factor

(2CO2e/kWh) 865.2 421.7 954.6 0 29.7 0 91 0 0
Contribution to

Carbon Intensity | 131,882 | 17,605,951 3,001,048, 0 64,183 0 379,820 0 0
(gC0O2e/kWh)

Through the use of these emissions factors, and the predictions for each generation type, the algorithm
was able to output a predicted grid emissions intensity. Predicted versus actual carbon intensity for
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Figure 2: Predicted versus actual solar generation for 3 days in March 2022.
72 hours in March 2022 may be seen in Figure 3. The algorithm was able to learn a slight undulating
pattern of carbon intensity, but does not correctly predict low enough carbon intensities in the middle
of the day. It appears that this issue likely resulted from compounding errors of the different models.
Le., even if one model performs rather well in isolation, at any given time one of the eight models is
likely to have an error which skews the final emissions prediction.
In particular, one should note the error associated with the best natural gas model, i.e., DemandRatio-
NoWeather-72LSTM. Compared to the other models, this model has the second highest RMSE value
of 0.146. Furthermore, this form of power generation has the highest actual contribution to grid
emissions according to CARB because it is used more often than other fossil fuels. Therefore, the
natural gas model is the largest source of error in the final carbon emissions predictions.

Carbon Intensity of the CAISO
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Figure 3: Predicted versus actual carbon emission intensity for 3 days in March 2022.

6 Conclusion & Future Work

In this project, we predicted generation mixes in the California grid one day in advance using a
recurrent neural network (RNN) trained on electricity and meteorological data. We then combined
those predictions with emissions factors to estimate the GHG emissions due to electricity generation.
We used RMSE to evaluate RNN models against ARIMA models and found that RNNs outperform
ARIMA by a significant margin. Specifically, electricity generation mix data normalized by total
demand combined with a 72 unit LSTM architecture performed the best. Since natural gas is the
largest contributor to emissions prediction error, future improvements to our models should focus on
just that generation type. If given more time and resources, we would have liked to perform a more
comprehensive grid search to explore more model architectures and parameters. We would have also
applied our models to predict generation mixes outside California.



7 Contributions

Kopal Nihar formulated and applied the "Demand Ratio" method, built the baseline ARIMA models,
and conducted RMSE analysis to determine the "mix-and-match" model. Jack Kessler collected EIA
data, predicted emissions using CARB emissions factors, and plotted predictions. Fletcher Chapin
collected CIMIS data, developed and executed the grid search, and trained the models. All group
members helped to conduct exploratory analysis, review literature, and draft the report.
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Appendix

Table 6: Raw solar generation data from ETA

Net generation from solar for California Independent System Operator (CISO) hourly - local time

https://www.eia.gov/opendata/qb.php?category=3390127&sdid=EBA.CISO-ALL.NG.SUN.HL

16:36:55 GMT-0700 (Pacific Daylight Time)

Source U.S. Energy Information Administration

Category,Series ID EBA.CISO-ALL.NG.SUN.HL megawatthours

04/26/22 23:00 -0700 | -1

04/26/22 22:00 -0700 | 51

Table 7: Raw weather data from CIMIS

Stn | Stn CIMIS Date Hour | ETo | Precip| Sol Vap Air | Rel | Dew | Wind | Wind | Soil
Id Name Region (PST) | (in) | (in) Rad Pres Temp| Hum | Point| Speed| Dir (0- | Temp
(Ly/day)| (mBars)| (F) | (%) | (F) | (mph)| 360) | (F)
211 | Gilroy | Monterey| 7/1/2018| 100 0 0 0 15.2 56.9 | 96 55.8 | 6.8 148 69.8
Bay
211 | Gilroy | Monterey| 7/1/2018| 200 0 0 0 15 56.3 | 97 55.5 | 5.6 139 69.8
Bay




