Spoken Language Detection
Speech Recognition

Michael G. Campiglia Nicholas A. Graziano Gabriel Ortuno II
Stanford University Stanford University Stanford University
mikecamp@stanford.edu ngraz@stanford.edu gortuno@stanford.edu

Abstract

Identifying a language only through audio can be a difficult task with the addi-
tional complexities not present in text such as accents, age, gender, pitch, speed,
and speaking proficiency. Before any technology that takes audio commands can
parse what is requested, it must identify the correct tongue. Hence this paper
focuses on tackling this dilemma by taking in audio files and converting them into
Mel Frequency Cepstral Coefficients (MFCC) that are fed as inputs to a convo-
lutional neural network (CNN) for language detection. The model incorporates
use of SpecAugment [1], to help generalize learning during training on twelve
languages from the VoxlingualQ7 dataset [2] (English, Mandarin, Hindi, Spanish,
French, Arabic, Bengali, Russian, Portuguese, Urdu, German, Japanese). Using
this approach, the team obtained an 88% accuracy utilizing 10 second audio clips.

1 Introduction

With the advent of machine translation in recent years the ability to translate a source text to one’s
native language has become almost trivial. Even in the case that the source language is unknown,
tools such as Google Translate have integrated a Detect Language feature that generally does a good
job, provided the input text is transcribed correctly in the original language. The task of identifying
an unknown spoken language, however, poses a more difficult challenge.

Firstly, orthography, or how a language is written, provides a major clue in identifying which language
one is reading. On the other hand, if one simply hears a sound, they are at a significant disadvantage.
Was that an English “sh”, a French “ch” or a German “sch”? Note that all three of these examples use
the Latin alphabet. Hence, there is an ever growing interest in creating effective models to distinguish
between languages clearly and efficiently. Explicitly, our team will take approximately 10 second
audio samples of English, Mandarin, Hindi, Spanish, French, Arabic, Bengali, Russian, Portuguese,
Urdu, German, and Japanese as inputs that then get converted to MFCCs after a transformation
to mel-spectrograms for a CNN to perform categorical cross-entropy and output the most likely
language candidate for each audio sample.

2 Related Work

State-of-the-art approaches for this task have converted audio utterances into spectrogram images
and feed them into CNNss to detect features for classification. The team used this approach as the
basis for this report as it is an innovative technique that has one of the highest accuracy amongst all
algorithms. In particular, the team leveraged the existing CNN implementation by Singh et al. [3]
that achieved approximately 98% accuracy on the Spoken language identification [4] dataset. This
work builds upon those such as Revay et al. [5], that performed language identification for audio
spectrograms (LIFAS) with a 89% accuracy on six languages of 3.75 second audio clips. As well as
Sarthak et al. [6] which used log-Mel spectrogram images for language identification that classified
six languages (English, French, German, Spanish, Russian and Italian) with an accuracy of 95.4%
from the VoxForge [7] dataset.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

It is important to note that these references use a small set of languages, meanwhile our team would
like to expand this concept to more languages and test with smaller audio samples. There is a known
weakness in using CNNs for audio language identification however, and that is the risk of overfitting.
SpecAugment [1], a data augmentation method for speech recognition, warps spectrogram features
as well as masks blocks of frequency and time steps. The development of this method by Park et
al. [1] achieves state-of-the-art performance on the LibriSpeech 960h and Switchboard 300h tasks,
hence our team will utilize it for data augmentation.

3 Dataset and Features

Through initial research, a plethora of datasets were found of numerous spoken languages with
varying sentence lengths, speakers, pitch, and speed. The team’s basis model by Singh et al. [3]
uses the Kaggle Spoken Language Identification [4] speech samples from the English, German, and
Spanish languages. The dataset has 73080 training samples as Free Lossless Audio Codec (FLAC)
audio files with a duration of 10 seconds and sample rate of 22,050 Hz. In order to expand the
capabilities of this model, a bigger dataset is needed to extend to more languages as well as test the
robustness of variations such as sample length.

The team chose to use VoxLingualO7 [2], a dataset consisting of short speech segments from YouTube
videos. VoxLingualO7 contains 107 languages, as the name suggests, with roughly 62 hours of
data per language (over 6600 hours total). The speech segments range from approximately 4-15
seconds and were preprocessed by the team to get sample lengths of 3, 5, and 10 seconds. A complete
breakdown of the total number of audio samples per time segment and train, dev, or test sets can be
found in Table 1, yet this excludes additional data that will be created from SpecAugment [1]. The
team only expanded the model to the twelve most spoken languages due to computation constraints,
but will use this as a proof of concept that incorporating more languages is feasible with this plentiful
and well-labeled dataset.

Table 1: Dataset Breakdown

Statistics 3s 5s 10s
IS0 Native Total
639-1 |Speakers Speakers

Index Languag Code |(Millions) (Millions) | n_train n_dev n_test | n_train n_dev n_test | n_train n_dev n_test
0 English en 3729 1452 82000 2310 2463 41003 1244 1299 11035 400 400
b { Mandarin zh 929 1118 71323 2604 2556 34185 1343 1318 8710 400 400
2 Hindi hi 3439 602.2 71173 2587 2549 34005 1330 1307 8501 400 400
3 Spanish es 474.7 548.3 65220 2312 2456 32446 1237 1319 8553 400 400
4 French fr 79.9 2741 68840 2509 2502 33139 1312 1297 8501 400 400
5 Arabic ar 0 274 69809 2516 2653 33479 1302 1352 8501 400 400
6 Bengali bn 233.7 272.7 88345 2762 2645 41536 1418 1354 10000 400 400
7 Russian ru 154 258.2 65005 2325 2155 32472 1255 1184 8772 400 400
8 Portugese pt 232.4 257.7 71359 2585 2614 34035 1343 1347 8501 400 400
) Urdu ur 70.2 231.3 72756 2326 2243 36440 1254 1207 10010 400 400
11 German de 75.6 134.6 66622 2408 2320 33329 1296 1248 8900 400 400
12 Japanese ja 125.3 125.4 75718 2946 2711 35349 1463 1386 8501 400 400
Minimum 65005 2310 2155 32446 1237 1184 8501 400 400

Per Language 65000 2000 2000 32000 1200 1200 8500 400 400

Total (x12) 780000 24000 24000 | 384000 14400 14400 | 102000 4800 4800

% Split 94.20% 2.90% 2.90% | 93.00% 3.50% 3.50% | 91.40% 4.30% 4.30%

4 Methods

Our team tackled this challenge through an image-based approach in which we converted raw audio
data into Mel spectrograms, transformed them into MFCCs, then applied a CNN architecture to
extract features for detection.

Mel spectrograms are commonly used in audio classification tasks instead of traditional spectrums
since humans can better detect differences in lower frequencies than higher frequencies. Mel accounts
for this by adjusting relative pitches to better replicate how they would be perceived by an actual
human listener [8]. An MFCC is generated by performing a Discrete Cosine Transform (DCT) on the
Mel spectrogram. This step is critical as using the Mel spectrogram directly contains superfluous
data that makes training difficult, hence reducing the dimensionality through MFCC is a needed step.

Briefly, CNNs take input images and traverse them with filters to slowly learn and detect features
such as edges. Multiple layers can be placed in sequence to detect higher level features, gradually
building a network of weights and biases that can detect items even as complex as language. We
created our own version of the CNN framework within Singh et al. [3], employing deep learning
generalizing techniques and best practices such as adding additional drop out layers, regularization,
use of He initialization to reduce chance of exploding or vanishing gradients, and splitting a single
dense layer into two smaller dense layers with less parameters to learn. Our CNN consists of five
separate convolutional layers, each individually followed by ReL.U activation, batch normalization,
and max pooling. The output was then fed into a series of flattening, normalizing, ReLU activations,
and dropouts along the way. Finally, the CNN ended with a softmax activation function to identify
each audio sample as one of the twelve we trained on. The entire CNN architecture can be found in
Appendix A, but a simplified representation of this can be seen in Figure 1.

A CONV —f RelU
o J
mo— ——— j>

Va'h Batch Max
= Norm Pool

Waveform Mel Spectrogram MFCC "
X

o]
W
Nom]

Figure 1: CNN Architecture

We used categorical cross-entropy (AKA Softmax loss) as our loss function since each sample can
only belong to one out of many possible languages. This allowed our CNN to learn to output a
probability over the amount of languages we have, selecting the top probability as the language most
likely being spoken. Equation 1 demonstrates this function where §j; is the probability the model
outputs that the language is class ¢ while y; is the true target value. Lastly, 1.j45ses 1S the number of
classes the model can output.

Nclasses

Loss = — Z y; - log 9 (D
i—1

5 Experiments/Results/Discussion

In order to begin training the model, good hyperparameters for our model had to be selected and were
chosen by leveraging the trial and error results from the works of Singh et al. [3], Revay et al. [5] and
Sarthak et al. [6]. Building upon their success and standard deep learning parameters, we selected
softmax as the activation output, ReLU as hidden layer activation functions, as well as the number of
hidden layers depicted in Figure 1. We also increased the typical batch size to 64 and epochs to 100
due to the higher amount of data samples we have, explicitly detailed in Table 1.

For evaluation metrics, we employed precision, recall, and F1 score. Precision is the ratio of correct
positive predictions from the total positive class. Recall is the ratio of correct positive predictions
from the total real positive cases. Lastly, F1 score represents the harmonic mean of precision and
recall. Mathematically, these metrics are listed as Equation 2, 3, and 4 below.

TruePositives

Precision = 2
TruePositives + FalsePositives @

Recall TruePositives 3)
ecall =
TruePositives + FalseNegatives

Precision x Recall
Fl1=2 4
¥ Precision + Recall)

After parameter and evaluation metric selection, the team attempted to do a simple addition of twelve
total languages to the base CNN architecture within Singh et al. [3] to see the results and pitfalls.
We decided to purposely stress the model by training with the original VoxLingualO7 audio clips
of length 3, 5, and 10 seconds independently with the results depicted in Figure 2. It is extremely
evident in the results that the model is overfitting on the short 3 and 5 second clips as the loss function
diverges over the course of training. The team was expecting this based on related work, hence
we took this into consideration when developing our own CNN architecture described within the
Methods section.

Three Second Samples Five Second Samples Ten Second Samples

model accuracy model accuracy model accuracy

— ftrain
—— test /_/—‘

101 — train 10

0{ —wvan__ oo
— ASSE

accuracy
accuracy
>
(
)
<
accuracy

0 20 40 60 80 100 0 10 20 0 40 50
epoch epoch

model loss model loss

— ftest A /~\ /
: MNAVNY

loss
loss

0 20 40 60 80 100 o 10 20 30 40 50 o 20 40 60 80 100
epoch

Figure 2: Three vs. Five vs. Ten second samples

Though key architecture changes were already noted, the most important expansion to our model
was the use of SpecAugment [1]. This data augmentation allowed our training data to go from 102
thousand examples to 510 thousand. Besides just having more data, it helped generalize the model
and limit overfit with the removal of segments it would perform such as the example in Figure 3.
Therefore, when our improved model was trained on 10 second samples with this augmented dataset,
we saw a clear improvement in precision, recall, and F1 score percentages as seen in Table 2.

igure 3: SpecAugment Example [1]

Table 2: Training Results

Model Model Model | Our Model

3 second 5second 10 second 10 second
Precision 67 a7 .83 .88
Recall .67 .76 .82 .88
F1 .67 .76 .82 .88

Performing a deeper analysis, a breakdown of the 10 second results for each language using our
model is shown in Table 3 followed by a confusion matrix in Figure 4. A very interesting thing to see
is that the languages with the lowest scores are those that are very similar such as Hindi and Urdu.
The model struggles on these languages because they originally developed from the same dialect and
share over 70% of their vocabulary at the beginner level [10]. Cognates, words that look and sound
similar in languages because of a common origin, make adding more languages a tough task. Even
with this in mind, the model performs better than the original with an 88% average F1 score amongst
the twelve languages.

Table 3: Language Metrics, 10 sec samples

Precision Recall Fl-score
English (en) 0.85 0.93 0.89
Mandarin (zh) 0.96 0.94 0.95
Hindi (hi) 0.71 0.80 0.75
Spanish (es) 0.89 0.84 0.86
French (fr) 0.93 0.91 0.92
Arabic (ar) 0.84 0.91 0.87
Bengali (bn) 0.87 0.83 0.85
Russian (ru) 0.95 0.90 0.92
Portuguese (pt) 0.95 0.86 0.90
Urdu (ur) 0.77 0.77 0.77
German (de) 0.88 0.92 0.89
Japanese (ja) 0.96 0.91 0.94
Average 0.88 0.88 0.88

en

L 80

hi

es

- 60
é ar

- 40

%]

pt

ur 20

de

ol 0

en zh hi es fr ar bn u pt ur de ja
Predicted

Figure 4: Confusion Matrix

6 Conclusion/Future Work

Spoken language identification is no trivial task, particularly when languages share a common
ancestry. As we saw in this report, languages with similar traits can be hard to distinguish. Hence,
expanding the model to incorporate more languages produces an overall lower accuracy due to lexical
borrowings. Furthermore, the longer an audio sample is, the higher the likelihood of our model
discerning the language. Longer clips give the model a higher chance of finding distinct features only
present in a particular language, catching the lexical dissimilarities.

In order to improve the model in the future, the team would need to add more data of each language,
particularly those close in nature, increase GPU capability for the amount of processing needed, and
perform an in-depth evaluation of the dataset for absent characteristics or overly repeated attributes.
Are the unique aspects of said language even present in the dataset? Lastly, the team can use the
results of the evaluation metrics to tune hyperparameters in an attempt to gain the best results.

Contributions

Michael Campiglia - Chief Deep Learning Architect Performed initial research for project, created
overall convolutional neural network model/helper functions, trained and enhanced model, produced
plots of training and validation results

Nick Graziano - Director of Dataset Exploration and Parsing Performed initial research for project,
created scripts for data parsing, shuffling, and labeling, produced CNN graphic

Gabriel Ortuno - Editor-in-Chief of Project Reports Performed initial research for project, created Git
repository, formed cohesive reports, performed dataset investigation for proper selection

References

[1] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph, E. D. Cubuk, Q. V. Le “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition” April 2019

[2] VoxLingualO7 http://bark.phon.ioc.ee/voxlingual07/ Accessed May 2022

[3] Gundeep Singh, Sahil Sharma, Vijay Kumar, Manjit Kaur, Mohammed Baz, Mehedi Masud, "Spoken
Language Identification Using Deep Learning", Computational Intelligence and Neuroscience, vol. 2021

[4] Oponowicz, T “Spoken language identification” (2018), https://github.com/tomasz-
oponowicz/spoken_language_identification Accessed May 2022

[5]1 S. Revay, M. Teschke, and Novetta, “Multi-class language identification using deep learning on spectral
images of audio signals,” 2019

[6] S. S. Sarthak, S. Shukla, and G. Mittal, “Spoken language identification using convNets,” Lecture Notes in
Computer Science book series (LNISA,volume 11912), 2019, LNCS

[7] voxforge.org: Free speech recognition - http://www.voxforge.org/ Accessed May 2022

[8] Roberts, Leland “Understanding the Mel Spectrogram”, Mar 5, 2020 https://medium.com/analytics-
vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

[9] Peltarion, “Categorical crossentropy”, https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/loss-functions/categorical-crossentropy Accessed May 2022

[10] Miyatsu, Rose, “Hindi and Urdu in conversation” https://artsci.wustl.edu/ampersand/hindi-and-urdu-
conversation Accessed May 2022

Appendix

A Full Convolutional Network

conv2d_input | input:
[(None, 20, 431,)] | [(None, 20, 431, 1)]
InputLayer | output:

conv2d | input:
(None, 20, 431, 1) | (None, 14, 425, 32)
Conv2D | output:

[batch_normalization [input: | PR
| BatchNormalization | output: | (None; 14; » 32)

max_pooling2d | input:
- (None, 14, 425, 32)
MaxPooling2D | output:

I

(None, 7, 213, 32)

[batch_normatization_1 [input:_| i .
| BawchNormalization | output: |(one;7.i213.(64)

(None, 14, 425, 32)

(None, 7, 213, 32)

conv2d_1 | input:

(None, 7, 213, 64)
Conv2D | output:

(None, 7, 213, 64)

max_pooling2d_1 | input:
- (None, 7, 213, 64)
MaxPooling2D | output:

I

conv2d_2 | input: |

(None, 4, 107, 64) I

(None, 4, 107, 64) | (None, 4, 107, 128)
Conv2D | output:

[batch_normalization_2 [input: |
(None, 4, 107, 128)
| BatchNormalization |

max_pooling2d_2 | input:
= (None, 4, 107, 128)
MaxPooling2D | output:

(None, 4, 107, 128)
| outpuc:

(None, 2, 54, 128)

conv2d_3 | input:
(None, 2, 54, 128)

[batch_normatization_3 [input:_|
== (None, 2, 54, 256) | (None, 2, 54, 256)
| BatchNormalization | output: |

max_pooling2d_3 | input:
= (None, 2, 54, 256) | (None, 1, 27, 256)
MaxPooling2D | output:

I

(None, 1, 27, 256)

I

(None, 1, 27, 256)

(None, 2, 54, 256)
Conv2D | output:

dropout | input:

Dropout | output:

(None, 1, 27, 256) |

conv2d_4 | input:

one, 1, 27, 512
Conv2D | output: o .

[batch_normatization_4 [input:_|
—— (None, 1, 27, 512)
| BatchNormalization | output: |

(None, 1, 27, 512)

max_pooling2d_4 | input:

(None, 1, 27, 512)
MaxPooling2D | output:

dropout_1 | input:
(None, 1, 14, 512) | (None, 1, 14, 512)
Dropout | output:

I

flatten | input: I

(None, 1, 14, 512)

(None, 1, 14, 512)

I

[batch_normalization_5 | input: | - 7168
| BatchNormalization | outpur: |(one ’

(None, 7168)
Flatten | output:

(None, 7168)

dense | input:
(None, 7168)

|

|batcl\7normali7aljo|176 | input:]
[BatchNormatization | oupue | VO 128

(None, 128)

Dense | output:

(None, 128)

dropout_2 | input:
Lk P (None, 128)

(None, 128)
Dropout | output:

dense_1 | input:
(None, 128) | (None, 64)
Dense | output:

|bamh,nonna]jzaﬁon,7 | input: |

(None, 64) | (None, 64)
| BatchNormalization | output: |
dropout_3 | input:
(None, 64) | (None, 64)
Dropout | output:
dense_2 | input:
(None, 64) | (None, 12)
Dense | output:

