Identifier Aware Vulnerability Detection using Deep
Learning
(Natural Language Processing,
Programming Languages)

Neelima Mukiri
neelimam@stanford.edu

Abstract

Detecting software vulnerabilities from source code is an important problem and
has been actively researched in the past years. There are many source code
analysis tools that use rule based systems to detect common mistakes in code
that lead to vulnerable software. This paper combines the use of intermediate
representation of source code or code gadgets with transformer based models,
specifically comparing identifier aware models with models trained on natural
language alone and compares the performance of the models in detecting and
identifying software vulnerabilities. The results show comparable results with both
the models and show a macro F1 score of 96.58% showing that transformer models
are well suited to identifying software vulnerabilities, even though the changes
between vulnerable and non-vulnerable code is sometimes minimal. Use of code
gadgets allows modeling dependencies across various source code libraries strongly
to make automatic detection feasible. This is a 3 percent improvement over both
[1] and [2] which use Code Gadgets with LSTMs or plain source code with BERT
+ LSTM.

1 Introduction

We work on a set of products based on Linux and Kubernetes which include many open source
components. Our team spends a significant amount of time identifying, tracking and resolving
security vulnerabilities, so that our customers have a secure production grade environment . As
[9] and [10] show the number of vulnerabilities in Kubernetes and Linux over the years is large
and growing. Also the cost of an undetected software vulnerability in production is high and opens
up customers to data loss, data corruption and vulnerable to hacking. So we want to automate the
detection of software vulnerabilities to benefit our product development cycle as well as the larger
community.

In this paper, I have focused on combining intermediate code representation with transformer
based models to detect software vulnerabilities. I have evaluated the performance on encoder only
models(BERT) and compared to identifier aware encoder-decoder CodeT5 models.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related Work

2.1 VulDeePecker (Code Gadgets and Bidirectional LSTM)

[2] introduces 3 guiding principles: code can be transformed into an intermediate representation,
the optimal granularity for detecting source code vulnerabilities is using code gadgets (CGD), and
detecting vulnerabilities in source code is dependent on the context of the source code. It uses a
Bidirectional Long Short-Term Memory cells to encode context of code before and after a given token.
This paper also introduces the VulDeePecker dataset that I have used. It reports an F1 score of 86.6 on
Buffer Error Vulnerabilities(CWE-119) and 95 on Resource Management Vulnerabilities(CWE-399).
The tokenization mechanism used in this paper is to vector encode each code gadget based on all
the unique tokens in the dataset. So this essentially ignores and semantic relation between different
tokens.

2.2 Security Vulnerability Detection Using Deep Learning Natural Language Processing
(Transformers)

[1] has compared using Transformer models to Bidirectional LSTM and combining the two to detect
source code vulnerabilities. The primary focus of this paper has been to identify mechanisms that
can predict a vulnerability fast, so that it can be used to augment a source code editor. Hence they
forgo the use of an intermediate representation and work on source code directly. Source code is split
into segments and fed to the transformer model (BERT). To encapsulate the context across different
segments, they then feed the output of the transformer model to a Bidirectional LSTM. The paper
reports an accuracy of 93.49 using the combination of BERT + LSTM.

2.3 Natural language vs Programming Language representations

Existing research has primarily treated code vulnerability detection either by going into generated
intermediate representations of code [4] or by treating code as natural language([1],[2],[3]) . The
approach in [4] completely discards syntactic information and the other approaches completely ignore
code structure and identifier information. To find a middle ground, I have used Code Gadgets which
allow encoding source code dependencies across function calls and Code-T5 tokenizer, which is an
identifier aware model trained on source code. [1] has primarily focused on identifying vulnerabilities
in functions. This is not easily generalized to any source code, as it expects input to be localized as a
function. This is solved by the use of code gadgets in ([2] and [3]).

3 Dataset

VulDeePecker vulnerability data set corresponding to two sets of vulnerabilities - Buffer Error
Vulnerabilities(CWE-119) and Resource Mangement Vulnerabilities(CWE-399). The data is pre-
processed and labeled to give code gadgets - which are one dependency control flow or data flow
graph for some selected source code.

4 Preprocessing

As seen in the above examples, existing data set has vulnerability information embedded in the
code - comment, function names etc. I’ve removed text that is indicative of the code health from the
training data. Some functions have Common Weakness Enumeration or Common Vulnerabilities and
Exposures names and identifiers in them, which I have removed.

Here is an example of a sample data after pre-processing, before tokenization.

char *psz_fileName = calloc(ZIP_FILENAME_LEN, 1); ZIP_FILENAME_LEN, NULL, @, NULL, @)
if(unzGetCurrentFileInfo(file, p_fileInfo, psz_fileName, vlc_array_append(p_filenames, strdup(psz_fileName));

free(psz_fileName);

The original dataset consists of 61638 samples. During error analysis, I found that there were may
samples with duplicates and samples which had both a Vulnerability and a No-Vulnerability label,
leading to a higher error rate. After removing all the duplicates and the samples with conflicting
labels, I found a large data imbalance as shown in Figure 3. There was a 6x representation of

#define BUFSIZE 256 #define BUFSIZE 256

int main(int argc, char *xargv) int main(int argc, char xxargv)
{ {
char xbuf; char xbuf;
buf = (char x)malloc(BUFSIZE); buf = (char x)malloc(BUFSIZE);
if (buf == NULL) if (buf == NULL)
{printf("Memory allocation problem"); return 1;} {printf("Memory allocation problem"); return 1;}
if (argc > 1 && strlen(argv[1]) < BUFSIZE) if (argc > 1)
{ {
strcpy(buf, argv[1]); strcpy(buf, argv[1]);
printf("buf = %s\n", buf); printf("buf = %s\n", buf)
} }
free(buf); free(buf);
return 0; return 0;
} }
Figure 1: Non-Vulnerable Code Figure 2: Vulnerable Code
Dataset Original Pre-Processed DETE]
(Remove Augmentation
Duplicates, (Over sampling)
Drop conflicts)
No Vulnerability 43913 17031 17031
CWE-119 10440 7485 14970
CWE-399 7285 2754 16524

Figure 3: Data Processing

non-vulnerable code vs code with resource management errors(CWE-399). I used oversampling to
bring the data samples to a similar count ending up with 48525 total samples.

S Learning Method

I used BERT and CodeT?5 transformer models as the base and fine tuned them with the pre-processed
VulDeePecker dataset. As BERT is an encoder-only model, fine tuning was simply changing the
final layer to use a 3 class soft-max classifier as shown in Figure 4. For the Code-T5 model, Figure
5 shows the option with an additional linear layer added after the last hidden layer followed by a 3
class softmax classifier.

The loss function used was cross entropy loss and the optimization was done using Adam with weight
decay. Cross Entropy Loss

M
Z Yo,c log(po.,C)
c=1

Code-TS5 tokenization with labels added was used for the Code-T5 model. Fine-tuning experiments
have been done primarily on an Nvidia A100 GPU.

6 Experiments

6.1 Neural Architecture Search

I fine-tuned the following models and compared their performance:

NoVulnerability

CWE-119 CWE-399

Softma

Softmax

CodeT5

Classification Layer: FC + GELU + Norm Linear

Transformer Encoder Layer N Transformer Layer N

Transformer Encoder Layer 2 Transformer Layer 2

Transformer Encoder Layer 1 Transformer Layer 1

Position Embedding

Position Embedding

Tokenization Tokenization

Code Gadget Code Gadget

Figure 4: BERT Fine-tuning Figure 5: CodeT5 fine tuning

e BERT (bert-base-uncased without data augmentation): This was the base line model I started
with. I changed the final layer of the model to a 3-class softmax function and used cross
entropy loss. Though the performance was pretty good(96.65), it showed a large variability
in performance across the different classes (90.5 vs 97.06).

* BERT (bert-base-uncased with data augmentation): I then used over sampling to reduce the
imbalance in the dataset across different classes. This reduced the variability across classes
(95.0 to 97.89) and improved the overall performance to 96.58.

* CodeT5 (codet5-small with data augmentation): As CodeTS5 is an encoder-decode model, I
tried two experiments for fine tuning. One was to use in as a sequence-to-sequence model,
but to train it to output the vulnerability class or absence of vulnerability as the output
sequence. To enable this I added CWE-119, CWE-399, and NoVulnerabilty labels to the
CodeTS5 tokenizer and updated the model to use the new tokens. That allowed it to correctly
classify the vulnerabilities with a F1 score of 96.21. The second approach was to take the
last hidden layer output and use that as the input to a linear layer and then use a softmax
classifier to identify the vulnerability details which gave a similar performance.

6.2 Hyper-parameter Tuning

I used Adam with Weight Decay as the optimization algorithm for fine tuning. I experimented with
batch sizes from 128 to 16. Anything above 64 was hitting the GPU memory limits while using the
bert-base-uncased or codet5 models and hence I used a batch size of 48 for most of the experiments.
T used a learning rate of 5e-5 for CodeT5 and 2e-5 for BERT models as this was recommended for
the BERT base model. Below is the example of how fast the training converged for the BERT model.
Layer selection information is detailed in the above section.

7 Results and Discussion

I evaluated the results using per-class F1 score and macro Fl-score as a single metric across the
different classes. Using Code-Gadgets as an intermediate code representation gave the best perfor-
mance while using Transformer models as compared with [1]. As shown below, BERT with data
augmentation performed the best of the models evaluated.

This was surprising to me as I expected CodeT5 to perform significantly better. One of the reasons
for this might be the data pre-processing that is done. Using Code Gadgets instead of source code
removes some of the code structure from the dataset. Also, the original data had variables and

Training loss

train_loss

10 — giddy-sea-72

1.5
i .
= -
“l i) ;]) i) i , oA b o b b SEEBUL
o 2k 4k 6k 8k 10k 12k
Figure 6: BERT Fine-tuning
Figure 7: CodeTS5 fine tuning
Predicted Predicted
CWE-199 CWE-399 NoVulnerability §G% CWE-199 CWE-399 NoVuinerability §5%
8 3
g -
=2 =
39 T3
gu £
<3 gz
H g
5 2
3 3
z E
0 ! 4,000 8,000 4] 4,000 8,000 0 4,000 8,000 0 3.000 0 3,000 0 3,000
Figure 8: BERT baseline Figure 9: BERT data-augmentation
owEs Z’:’:“"" NoVunorailty - Model F1 Score F1Score F1 Score F1 Score
g i oVunerabily {55 Architecture/ | (macro) No CWE-119 CWE-399
k3 Experiment Vulnerability
g
bert-base-
m uncased
T3
K
E g bert-base- 96.58 95.0 96.0 98.74
© uncased (Data
% augmentation)
9
E CodeT5- 96.21 94.59 96.16 97.89
3 small(Data
= augmentation)
0 3,000 0 3,000 [} 3,000

Figure 11: F1 scores

Figure 10: CodeT5 small

functions named ’good*’ or bad*’ to represent the presence of a vulnerability. I replaced all of them
with ‘something* thus nullifying the value of any information the identifiers were bringing. Code
identifier information is essential to tasks like code generation or auto-completion where we are
trying to emulate human readable code generation. A vulnerability detector however needs to be
immune to intentionally introduced tokens like ‘good‘ and ‘bad‘ and instead focus on the cause of the
vulnerability. Hence the context of the source code seems to be the most relevant factor for detecting
vulnerabilities.

8 Acknowledgements

I would like to thank Meenakshi Kaushik for collaborating on the project proposal.

9 References

[1] Noah Ziems and Shaoen Wu. Security Vulnerability Detection Using Deep Learning Natural
Language Processing, 2021; arXiv:2105.02388.

[2] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng and
Yuyi Zhong. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection, 2018;
arXiv:1801.01681. DOI: 10.14722/ndss.2018.23158.

[3] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li and Hai Jin. VulDeePecker: A Deep
Learning-Based System for Multiclass Vulnerability Detection, 2020; arXiv:2001.02334. DOI:
10.1109/TDSC.2019.2942930.

[4] Mingyue Yang. Using Machine Learning to Detect Software Vulnerabilities, 2020;

[5] Yue Wang, Weishi Wang, Shafiq Joty and Steven C. H. Hoi. CodeT5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Understanding and Generation, 2021; arXiv:2109.00859.

[6] NIST software assurance reference dataset project. https://samate.nist.gov/SARD/.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser and Illia Polosukhin. Attention Is All You Need, 2017; arXiv:1706.03762.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, 2018; arXiv:1810.04805.

[9] Magno Logan Minding the Gaps: The State of Vulnerabilities in Cloud Native Applica-
tions https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/minding-the-gaps-
the-state-of-vulnerabilities-in-cloud-native-applications

[10] CVSS Severity Distribution Over Time https://nvd.nist.gov/general/visualizations/vulnerability-
visualizations/cvss-severity-distribution-over-time

[11] https://kubernetes.io/

[12] Denis Rothman, Transformers for Natural Language Processing,

