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Abstract

Why are income and wealth so unequally distributed? To answer such questions, economists study
so-called Mean-Field games, which can be summarized as a system of two coupled partial differential
equations (PDEs), one to describe the optimal behavior of agents and one to model macroeconomic
distributions. However, as these models’ complexity increases due to economists’ growing desire to
design them most realistically, the underlying PDEs get increasingly difficult to solve with standard
numerical methods like finite differences or finite elements. We use a feed-forward neural network
trained with Adam to solve these systems of equations in the workhorse heterogeneous agent model
of [2]. Compared to the benchmark finite difference solution, our approximation achieves a mean
percentage deviation of 0.178% on a 50x50 development set grid and 0.200% on a 40x40 test set grid.

1 Introduction

Partial differential equations (PDEs) naturally arise in economic models featuring stochastic uncertainty. But the
increasing complexity of economic models, driven by the desire to design these models in the most realistic way, makes
it harder to find closed-form solutions for these PDEs. Thus, it is of high relevance to develop efficient and robust
numerical methods to solve PDEs in economic frameworks. However, the traditionally employed finite difference
methods suffer from the curse of dimensionality, i.e., as the model becomes higher dimensional, the grid to solve it
grows exponentially large, and those methods become more or less impossible to apply in practice [30]. We hope that
deep neural networks can provide such robust solution methods. Our project aims to solve (Hamilton-Jacobi-)Bellman
equations (HJB) since these equations describe the optimal economic behavior in a wide range of models.

We focus on a macroeconomic heterogeneous agent model, more precisely a Mean-field game (MFG) introduced
by [27]. The idea of MFGs is to couple the HIB equation, which describes the optimal behavior of agents, with
the Fokker-Plank equation (FP), which keeps track of the distributions of agents among different dimensions. Such
models are of rising relevance as they help analyze distributions of macroeconomic variables, e.g., wealth inequality,
an emerging problem in the United States and many other countries [37]. For example, in 2021, the top 1% of the
wealthiest Americans owned 27% of the wealth, and therefore for the first time in history, more than the 60% of
middle-class Americans combined [14].

As an application, we use the current workhorse model of [2], which models income and wealth inequality simulta-
neously and has an accurate finite difference solution. However, this model still lacks a lot of real-world complexity,
which is needed for real-life applications and, more specifically, policy analysis. For example, it does not feature a
banking sector. With our project, we hope to be able to provide neural network solutions for much more comprehensive
models to develop (policy) instruments reducing income and wealth inequality.

We use a feed-forward neural network to approximate the solution of the HIB, which we denote as the value function V.
The network’s input is a generated two-dimensional grid of data points representing agents’ labor income and wealth.
The network’s output is the value of V' at the specific point on the grid. We train our model using Adam optimizer and
evaluate the performance for our main error metric mean squared error (MSE) for our development and test set, using
the finite difference solution as the benchmark. Further, we present and discuss the metrics maximum absolute error
(MAE) and mean percentage error (MPE) and compare the two approaches regarding runtime and usability.

2 Related Work

Deep learning-based approximation methods for PDEs have first been proposed in the 1990s by [12] and [26]. However,
only recently, with the rise of deep learning, the idea of using neural networks to solve PDEs has gained traction again,
and a variety of methods to tackle such equations emerged.



Theoretical Results: Currently, no theorem proves that neural networks can overcome the curse of dimensionality for
all kinds of PDEs, which would mean that the number of parameters used to describe the approximating neural network
is growing at most polynomially in the PDE dimension d € N and the reciprocal 1/¢ of the desired approximation
accuracy € € RT [6]. Nonetheless, there are some first results for different classes of PDEs. [24] show that feed-forward
neural networks using ReLLU activations can do so for PDEs with Lipschitz continuous nonlinearities. Other cases
include PDEs for pricing American options, neural networks to approximate the heat equation, elliptic PDEs, and
controlled PDEs with uncertain initial conditions and source terms [17; 13; 18; 34]. For an overview, we refer to [23].
Feed-Forward Neural Networks: [33] propose deep learning methods to solve PDEs in physics. They, for example,
use feed-forward neural networks with gradient descent to solve the Schrédinger equation. Based on that, [29] created
DeepXDE, a library for solving physics informed neural networks. We build on those results and convey the ideas to
economic models, where we similarly have parabolic PDEs. Additionally, [38] developed the Deep Galerikin Method,
where they approximate PDE solutions by a neural network instead of a linear combination of basis functions. We tried
their random sampling approach during training, but for our 2-dimensional PDE the results did not improve.

Deep BSDE Method: [20] show how deep learning networks trained with stochastic gradient descent can be used
to tackle high dimensional PDEs. However, their approach uses backward stochastic differential equations (BSDEs),
specifically to draw the connection between BSDEs and quasi-/semilinear and even nonlinear PDEs, making it difficult
to apply in practice. Roughly speaking, one has to reformulate the underlying PDEs as stochastic optimization problems
on an infinite-dimensional function space, using the idea behind the Feynman-Kac theorem (cf. [31]). However, the
method gets applied in various fields like finance and robotics since it allows providing error bounds [22; 11; 32; 23; 24].
Other Approaches: [36] use a ResNet to work with a Lagrangian formulation of the optimization problem and enforce
the underlying HIB. Similar to the BSDE formulation, this requires a reformulation of the problem. [28] and [8]
parameterize the value and density functions of the MFG by two neural networks. Then, solving the MFG is a special
case of training a generative adversarial network (GAN), which in their case is a Wasserstein GAN. The disadvantage is
that a Wasserstein GAN is a particular instance of a deterministic MFG. Using our approach, we can directly solve the
stochastic formulation and thus do not need a second neural network to solve for the resulting density function.
Economic Literature: In the field of MFGs, [19] use deep learning to develop approximation methods for Markovian
Nash equilibria of stochastic games with a finite number of agents based on approximations for HIBs. [10; 9; 28; 36]
apply deep learning to solve for Markovian Nash equilibria of stochastic games with an infinite number of agents based
on MFG theory and approximations for HIB PDEs similar to our setting, although with a finite time-horizon which
makes the solution easier by allowing to solve the HIB backward in time. The closest study to ours is [15], who use
deep learning to model migration patterns. They employ feed-forward neural networks to solve for the optimal behavior
of agents using minibatch gradient descent. We construct our model similarly but can simplify their approach. For
example, we do not need to explicitly account for our model’s (boundary) constraints but rather do it implicitly. Second,
we use the Adam optimizer, letting training converge much faster. Third, we achieve a better training performance
on an equidistant grid, whereas [15] drew training points from the ergodic distribution similar to [38], which can be
computationally costly if there does not exist a closed-form solution for the ergodic distribution.

3 Problem Description

We apply our method to the continuous-time heterogeneous agent model developed by [2], in particular the version in
Online Appendix G, to which we refer for additional details of the parameters and exact functional forms. The model
features a continuum of agents who maximize their lifetime utility from consumption c and savings s, given their wealth
a and labor income z. The wage process follows a truncated Vasicek mean reversion process with mean reversion speed
¢, normalized long-run mean 1, and variance o. Further, agents are risk-averse with parameter -y, and they discount
future consumption with rate p. Each agent faces the same interest rate r, aggregate capital stock K, which firms use to
produce goods, capital depreciation rate J, and factor share of capital «, a production function parameter.
Given that setting, one can describe the agents’ optimal program for choosing the path of consumption, ¢, by the HIB.
We denote the solution for the value function as V' and the solution of the FP equation as the density p, which tracks the
distribution of labor income and wealth. We solve the stationary equilibrium of the model, which takes the form
c
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where we have the constraint that the density p integrates to 1. Note that in our code, we solve the Fokker-Planck
equation by using the adjoint of the infinitesimal generator of the HJB following [2] based on an upwind scheme
developed in [4]. If that is not possible, numerical simulations indicate that deep learning-based approximation
algorithms for linear FP equations might be more efficient than standard Monte Carlo approximation methods, not just
at a fixed space-time point but on an entire region, such as on high-dimensional cubes cf. [5, Sec. 3]. This would require
a second feed-forward neural network, which we will leave for future research.
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Table 1: Hyperparameter Tuning.

The table summarizes our hyperparameter tuning process. It displays the hyperparameters we
tune, the initial grid values, and the finally selected values. We choose the hyperparameters by
randomly sampling from the grid and evaluating the performance on the development set.

Hyperparameter Grid Values Selected Value
Layers [2,4,6,8,10] 6
Neurons [32, 64, 128, 256, 512] 128
Hidden Layer Activations [tanh, ReLU] RelLU
Learning Rate 30 points, logarithmic scale from 1072~ 10~! 1.26-104
Epochs 10 points, linear scale from 10,000 to 100,000 50,000

4 Dataset and Features

First, we set the global parameters of the model to K = 3.8, a = %
§ =0.1,and r = a K> ! — §, in line with economic literature [2; 35].
The inputs we vary, the features for our neural network, are the state variables for wealth a and wage z, whereas the
outcomes are the respective values of the value function. To generate data for our training process, we define 100
equidistant points for a ranging from -1 to 30 and 100 for z ranging from 0.5 to 1.5, following [2] for the ranges. We
then collect the points in a grid, resulting in 10,000 combinations of input features (a, z) in total. As the development
(test) set, we use a 50x50 (40x40) grid on the same domain, resulting in 2,500 (1,600) points. Due to the sufficient
description of the data by the grid parameters, we refrain from including examples of our data in this report.

Before feeding the data to the model, we normalize the data by subtracting the mean and dividing by the standard
deviation. This is especially important for decreasing training runtime since the ranges of a and z differ substantially.

S Methods
5.1 Solution Algorithm

w=(1-a)K* oc=01,v=2,p=0.05,

To approximate the value function V', we define the feed-forward neural network f/(a7 z;0V) : R?2 — R, where the
inputs are the grid points for a, z, and the weights " and the output is the respective value of V. We train the network
using Adam optimizer [25] on the full batch because Adam performs better than SGD, which we also tried, and overall
training converges faster on the whole batch than when using mini-batches. We implement the network using Python
3.8.10, NumPy 1.22.3 [21], SciPy 1.8.0 [39], and TensorFlow 2.8.0 [1] on a NVIDIA GeForce RTX 3090.

5.2 Cost Function

We define our cost function as the difference between the left-hand side and the right-hand side of the value function (1),

L—7y - -
+ 0.V (a, z; GV)(Z +ra—c)+9.V(a,z; OV)go(w —2)

Jpla,z0Y) = || = pV(a,26") + 1

+ %5‘,2217(@, 2:0V)02(2)||2 + penalty for non-increasing v.

We add a penalty term because we struggled to generate a strictly increasing and concave value function during the
early stage of training, which is assumed in economic theory (more wage/wealth always has a higher value for the
agent). Thus, we follow the notion of [3], Appendix G.3, and include a (large) penalty term to the cost function for
infeasible predictions in the following way: (1) Set a punishment parameter gPunish — 10=8 _(2) If the value function is
not increasing between two grid points, add a penalty 1/eP""s! for each violation. The punishment term will guide the
parameter updates so that improved iterations of the value functions do not feature non-increasing areas. Note that we
do not need to explicitly account for boundary conditions compared to earlier works discussed in section 2.

6 Experiments, Results and Discussion

6.1 Hyperparameters

To tune the hyperparameters, we define a grid with different values on appropriate scales, where we choose the ones to
tune and the grid values following related literature. For example, [34] use ReLU, whereas [33] uses tanh for activations.
Then, we try the hyperparameter combinations on this set of points at random and select the combination with the
lowest costs on the development set. We display the tuned hyperparameters, the initially defined values, and the finally
selected parameters in Table 2. We leave the Adam hyperparameters [3; and 35 at their default values 0.9 and 0.999.

6.2 Evaluation Metrics

As main evaluation metrics to measure the performance and reliability of our approach on the development and test set,
we use one optimizing metric, the MSE, and one satisfying metric, which requires the value function to be concave, a
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Figure 1: The figure summarizes some of our results. Panel (a) depicts the value function as a function of labor
income z and wealth a, numerically obtained using finite difference, our benchmark solution. Panel (b) displays the
value function for our neural network solution for 50,000 training epochs. Panel (c) illustrates the approximation error,
defined as the difference between the finite difference solution and the neural network solution. Panel (d) shows the
costs as a function of epochs for the train set and the development set, and Panel (e) depicts the marginal density for z
compared to the normal distribution implied by the Vasicek model for the process z.

fact from economic theory. We compute the MSE as the mean squared difference between the finite difference solution,
which we denote as the true value, and the solution obtained from the neural network,

1 M - 2
MSE = - 33" (V™ (as, ) — V(@i, 23:6"))

i=1 j=1

where IV and M refer to the number of points along the a and z-axis in the train/development/test set. We decide on the
MSE as our main metric because in economics, we prefer approximations with many small errors over ones with fewer
but larger errors, and the MSE weights large deviations more heavily than small ones. The satisfying metric is required
since a flat surface function that always outputs a value of zero also solves the PDE but violates economic assumptions.
Further, we present and discuss the MAE and the MPE to provide a more throughout discussion of the final approxima-
tion, which are defined as

N M -
~ 100 |[V'e(ay, 2;) — V(az, 255 0V))|
= tue( . o) _ P4 — ] 13 %79
MAE = ?:I??')’(JX,,W (ai,zj) — V(a;,2;;60")|, and MPE N 2 ;71: [Vie(q;, 2;)] .
J=1,.., i= —

The MAE gives us valuable insights into the maximum deviation of our solution that can be observed somewhere on the
grid and, thus, by chance on a point that can be realized in actual data. The MPE describes the relative error and thus
allows for a comparison of our networks’ performance with approaches in the literature solving other PDEs.

6.3 Results and Discussion

Figure 1 and Table 2 summarize our results. In Figure 1, by comparing Panel (a) and (b), we see that our neural
network solution is close to the benchmark finite difference solution while preserving the functions’ concavity. To better
visualize the overall error on the entire domain, we refer to Panel (c). Here we observe that the error is largest for small
values of z and a, measuring around 0.3. However, with increasing values along both dimensions, the error quickly
stabilized at low values below 0.1. We likely observe this pattern because the function has a stark curvature for low grid
values, making it harder for the network to approximate it. Panel (d) shows that the costs for both the train and the
development set oscillate heavily for the initial 10,000 epochs and then decreases more consistently. The oscillation
can be explained by the large penalty term during the period where the network still learns to compute an increasing
function. Lastly, we show the marginal density for the labor income z in Panel (e). Since the wage process follows a
Vasicek process, we know its asymptotic distribution is normal, and we can plot the closed-form solution to compare it
with the implied marginal density of our neural network solution. As we can see, the two densities are almost identical,
a further indicator of our approximation’s good fit and an essential result for distributional economic policy analysis.
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Table 2: Error Metrics for Different Epoch Numbers on the Train, Development and Test Set.
The table shows the MSE, MAE, and MPE on the train set, the development set, the test set, and the
corresponding training runtime in seconds for different epochs of training.

Train Set Development Set Test Set
Epochs MSE  MAE  MPE MSE  MAE  MPE MSE  MAE  MPE Runtime
1,000 44965 11.451 48.989 45.110 11.494 48.901 45.175 11.529 48.861 77.086
5,000 0.066 0.716  1.281 0.074 0.754 1.352 0.078 0.769 1.383 384.878
10,000 0.029 0590 0.612 0.034 0.625 0.706 0.037  0.639 0.741 772.992
25,000 0.004 0568 0.479 0.006 0.599 0477 0.007 0.616 0479  1,928.684
50,000 0.003  0.710  0.149 0.005 0.741  0.178 0.006 0.759 0200 3,916.951

We summarize the MSE, the MAE, the MPE, and the runtime for the train, development, and test set for different
numbers of epochs in Table 2. The error measures almost always decrease with the number of epochs. At 50,000
epochs, we have a good approximation on the train set with a MSE of 0.003, although we still have a slight avoidable
bias since the Bayes error for this task is 0. Further, the metrics are slightly worse for the development and test set
since the network learns to approximate the function for the specific points in the train set instead of learning the exact
functional form. Whether this indicates a variance problem that can be resolved with regularization or with a more
densely sampled train set is left for future research. Interesting to note is that the MSE and MPE, indicating our average
performance, always decrease with the number of epochs, while the MAE again increases from 25,000 epochs on
for all sets. As such, although our performance on the entire grid improves, we are further off for some single points
after more training epochs. We achieve a mean percentage error of 0.178% for the development set and 0.200% for
the test set, which is more than sufficiently precise with regard to the usual measurement errors in macroeconomics.
Nevertheless, for example, [33] achieve a MSE of 3.495 - 10~° for their network solving the Allen-Cahn equation on
generated data points, a performance we do not meet. However, it should be noted that their functions range itself is
smaller, and, additionally, [40] tried but failed to replicate their results. In terms of runtime, training the network for
50,000 epochs requires a bit more than an hour, which is an acceptable timeframe. Yet, especially when trying various
hyperparameter combinations and more epochs, it takes significantly longer than the finite difference approach.

7 Conclusion and Future Work

We show that feed-forward neural networks are capable of solving parabolic PDEs arising in complex economic models
featuring a continuum of heterogeneous agents. We compare the resulting approximation to the standard finite difference
solution of the underlying model. Our neural network solution is almost identical to the finite difference solution,
and we demonstrate how researchers can modify the cost function to preserve functional properties like concavity. It
achieves a MPE of 0.178% for the development and 0.200% for the test set, which is a sufficient approximation when
working with macroeconomic data. However, the neural network solution is usually not preferable for problems where
finite difference solutions exist. The main reasons are the slight deviations from the true solution, especially for areas
of high curvature. Additionally, although implementing the neural network itself is easier and quicker, much time is
devoted to hyperparameter tuning and training the model in general. Nevertheless, finite difference underlies the curse
of dimensionality in higher-dimensional settings, and neural networks might provide the only feasible solution in those
cases. With our work, we hope to encourage economists to develop more complex models and try solving them with
deep networks if their conventional numeric methods fail.

However, our work comes with a few limitations. First, our way of evaluating the satisfying metric requires knowledge
about the geometrical form of the solution of the underlying PDE, which one might not always have readily available.
A more founded and mathematical evaluation would increase our work’s objectivity. Further, we chose our test set to be
equidistantly distributed along both axes. In real-world data, we observe much higher proportions of agents below zero
wealth, e.g., 32% of US households cannot afford a $400 emergency payment [7]. Thus, we have disproportionately
often data points in the grid area where our performance is below average. Therefore, our MSE evaluated on our
equidistant test set grid is likely lower than the MSE for a set of actual data points.

For future research, in terms of improving our specific network, we suggest addressing the higher error in areas where
the solution features stark curvature. For instance, future work could sample more points in that particular area, for
example, by using a log grid on the a-axis instead of an equidistant one. This results in more grid points for low
values of a than high values of a, where the value function becomes more linear and the approximation more accurate.
Furthermore, we advise more comprehensive initial sets for the hyperparameter search with a coarse to fine search
process. This especially applies to the number of epochs, where further exploration was not possible due to the limited
time for the project and the high training runtime. Regarding the general topic of solving PDEs in economics, it would
be necessary to try solving equations with more dimensions than two, as the problems of finite difference then start to
show. However, finding a benchmark solution then presents a challenge. Possible solutions may be to test the algorithm
on a class of high-dimensional free boundary PDEs which have the special property that error bounds can be calculated
for any approximate solution, as done in [38], or to employ high dimensional Monte-Carlo methods [16].
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