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Abstract

Fluid rate measurement and forecasting in the oil and gas industry is crucial for the field
development. The goal of this project is to develop a virtual-based flow meter to forecast the oil rate
of two wells from the Norwegian Norne field with limited history (500 time steps), using deep
learning models. This paper introduces a novel idea showing the first time implementation of
transfer learning and pre-trained deep Neural Basis Expansion Analysis for Interpretable Time
Series Forecasting (N-BEATS) model in oil production forecasting. Prior work was limited on
applying feature-based linear regression algorithms and traditional sequence deep learning models,
mainly RNNs, LSTMs, and Long Short Time Series Network (LSTnet), to predict the pressure
response of a single well with a single fluid. In this paper we extended the application of deep
learning research by introducing two new methods, an attention-based model using the Temporal
Fusion Transformer (TFT) and a transfer learning approach using pre-trained N-BEATS on M4
series. Both TFT and the pre-trained N-BEATS models outperformed traditional LSTM model,
increasing the test score (MAE) by 0.04 and 0.08, respectively, demonstrating excellent matching
results by N-BEATS. We concluded that using transfer learning and pre-trained N-BEATS model
eliminates the previous disadvantages of LSTM models requiring multivariate features and a large
training history. This research shows auspicious results for using transfer learning and N-BEATSs
model in the petroleum industry, especially for new or green fields with limited historical data.

1 Introduction

In the oil and gas industry, fluid rates prediction is critical to ascertain future well planning and field
development requirements. Nowadays, many operators are digitizing their oil fields by installing
downhole and surface sensors on individual wells, providing continuous and real-time measurement of
rates and pressure. These sensors are typically expensive costing around 290,000$ including
maintenance cost which can be avoided using virtual-based flow meters via machine learning. Existing
research on this subject shows implementation of feature-based linear regression algorithms and
deep learning architecture, mainly RNNs, LSTMs and LSTnet, to predict the pressure response of a
single well with a single fluid [1], [2], [3], [4]. In this project, we introduce two new deep models
for time series forecasting, an attention-based TFT model and a transfer learning approach using a
pre-trained N-BEATS model on M4 series to predict oil rate profiles in a multi-well reservoir system.

2 Dataset

The dataset compiled for this project is adopted from an offshore field in the Norwegian sea, called
the Norne field. Production data of the Norne field and its associated simulation model are published
for public research. The dataset mainly includes multivariate time series data of wells’ rates and
pressure. The historical field data of two wells, containing 500 timesteps, were extracted from the
simulation model. In this research, we aimed to develop a model to predict the wells’ oil rates. Other
time series data including, pressure and water rate were used as past features. A sliding window size
of 31 timesteps was used, consisting of 30 past timesteps as input features and one future timestep
to predict the target oil rate. The dataset was split into 85% for training, 432 historical time steps, and
15% for testing, 76 future time steps. The dataset was scaled prior to training to equalize features’
weights and improve convergence of the deep learning models

3 Methods



In this work, we mainly relied on applicable deep learning models designed to handle the sequence
dependency of time series data. In our first application, we trained the dataset using the LSTM model
to predict the wells’ oil rates [3]. One of the main challenges of this project is the limited history of
the field having a small dataset size and limited features. The target oil rate data was also complex
with no clear trend or seasonality. Hence, it was rather challenging to fit the LSTM model requiring
enormous iterations and complex hyperparameters’ tuning. Even with that being done, the model
might not generalize well for the test dataset. The second model we used was the Temporal Fusion
Transformer (TFT). The TFT model integrates the mechanisms used in LSTM layers, the attention
heads in transformers and the Gated Residual Network (GRN) to learn the relationship along the
time axis. The TFT model applied on the dataset outperformed the LSTM model, however, the
prediction has not reached the desired level yet. To overcome these challenges, we adopted a new
transfer or meta learning approach for time series prediction. We utilized a recently developed deep
learning model called N-BEATS, Neural Basis Expansion Analysis for Interpretable Time Series
Forecasting, to pre-train it on the large M4 time series dataset and use it to predict the target oil rate
in our testing set.

3.1 LSTM Model

LSTM models are capable to learn long-term dependencies and perform multivariate time series
prediction. BlockRNN architecture was built utilizing the Block Recurrent Neural Network model
(BlockRNN) provided by the Darts and Pytorch library. After numerous iterations, our best
BlockRNN model comprised of 2 LSTM layers with 1000 units followed by three fully connected
layers of sizes 512,512 and 1024, respectively. A batch size of 96 was used, refer to Table 1
summarizing the model’s parameters. Adam optimizer was used with a learning rate of 1074 to
minimize the Mean Squared Error (MSE) loss function. The model was set for a target iteration of
500 epochs while adopting an early stopping technique to monitor the losses with a patience of 50
epochs. During hyperparameter tuning, it was found that larger model architectures with small
learning rates and larger batch size are required to minimize the loss function.

Table 1:Key parameters of BlockRNN model

Parameters Value
Number of LSTM layers 2

Number of units in LSTM 1000

Learning rate 0.00001
Number of Fully connected layers (FC) 3

Number of neurons in FC layers 512,512, 1024
Epochs 85

Batch size 96

Optimizer Adam

Loss function MSE

3.2 Temporal Fusion Transformer (TFT)

Temporal fusion transformer is an attention-based deep learning model for time series
forecasting. The building block for TFT consists of a Gated Residual Network (GRN)
comprises of two dense layers and two activation functions, Exponential Linear Unit (ELU)
and gated linear unit (GLU), allowing for both skip connections and gating for efficient
information flow. It also contains a Variable Selection Network (VSN) for selecting the most
relevant features at each time step. Time-dependent processing is based on, an LSTM encoder-
decoder for local processing and a self-attention layer for learning long range dependencies
across different time steps [5]. The architecture used in this project was built utilizing the
Darts and Pytorch library, as showing in Figure 1. The model comprised of a single LSTM
layer , 64 hidden neurons of each dense layer of the GRN and a single self- attention layer,
refer to Table 2. The TFT is trained by minimizing the quantile loss function summed across



a certain quantile, (q) € [0.1, 0.5, 0.9] , refer to Equation 1. A batch size of 96 and Adam
optimizer were used with a learning rate of 10— to minimize the quantile loss function
centered around 0.5. We followed the same training procedure used in the previous LSTM
model for monitoring the loss applying early stopping technique. Using grid search, it
was found that less attention head layers minimizes the loss function.
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Figure 1: TFT model architecture

Table 2:Key parameters of TFT model

Parameters Value
Number of LSTM layers 1
Number of neurons in the hidden layer 64
Learning rate 0.0001
Number of attention heads 1
Epochs 135
Batch size 96
Optimizer Adam
Loss function Quantile (0.5)
ALY, 9,q) = max[q ((y =), 1 -y = 9] Equation 1

3.3 Transfer Learning Using Pre-Trained N-BEATS on M4 Dataset

N-BEATS is a new state of the art deep neural model developed in 2019 to handle time series prediction
tasks. The basic building block of N-BEATS consists of a multi-layer fully connected network with
ReLU activation function. The block predicts two expansion coefficients, forward (forecast) and
backward (backcast). The blocks are organized into stacks using doubly residual stacking principle.
Partial forecasts predicted by each block are hierarchically aggregated first at the stack level and then at
the overall network level [6]. The N-BEATS algorithm outperformed all existing deep learning models
when applied on the M4 dataset improving forecasting accuracy by 11%. The M4 is a large and highly
heterogeneous dataset containing a collection of 100,000 time series data from business, financial and
economic forecasting problems. The N-BEATS model was pre-trained on the M-4 series using the
hyperparameters listed in with mainly 2 layers and 20 stacks utilizing a gpu machine, as adapted from
[7] and [8]. The Symmetric Mean Absolute Percentage Error (SMAPE) was used as a loss function during
training, Table 3. A transfer or meta learning approach was used to predict the oil rate series of our testing
dataset via sharing the N-BEATS model parameters and weights learned from the M4 series. Figure 2



shows our adopted transfer learning modeling approach.

Table 3: Key parameters of N-BEATS model

Parameters Value
Number of stacks 20
Number of blocks 1
Number of layers 2

Layer width 136
Expansion coefficient 11
Learning rate 0.0001
Optimizer Adam
Loss function SMAPE
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4 Result and Discussion

With the tuned hyperparameters currently achieved for the BlockRNN ,TFT and N-BEATS models, the
N-BEATS model outperformed both the BlockRNN and TFT models. Figure 3 shows the prediction
results of well 1 and well 2 for all models for the testing dataset. Table 3 also benchmarks the achieved
MSE and RMSE for all models. N-BEATS model was able to achieve excellent match of the forecasted
oil rates from the test data for well-1 and well-2. This transfer learning approach from the abundant M4
time series data was able to overcome the limitation of small dataset size yielding successful prediction
without supplying the model with any covariate features.
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Figure 3:0il rate prediction using three models BlockRNN, TFT and N-BEATS

Table 4: Testing scores comparison of all models for well-1

well-1
BlockRNN TFT N-BEATS
MAE 0.09 0.06 0.01
RMSE 0.1 0.09 0.02

Table 5: Testing scores comparison of all models for well-2

well-2
BlockRNN TFT N-BEATS
MAE 0.22 0.08 0.03
RMSE 0.24 0.1 0.04

3 Future Remaining work
In this paper, we used a single-time step prediction during forecasting. For future work, we will use the
N-BEATS model for multi-time steps prediction using two techniques, a single-shot and autoregression.
Forecasting multi-time steps in the future will be a game changer in the oil and gas industry because it
will allow for predicting multi-years performance of new fields with limited data and provides a reliable
replacement for costly downhole sensors in digital fields.

4 Contribution
This study was performed by Zainab Al-Ali .Many thanks to the project mentor Vincent Li for the
support and guidance, and for Professor Andrew Ng and Kian Katanforoosh for teaching the deep
learning course.
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