Race Track Driving Using Deep Reinforcement
Learning With Demonstration

Lear Du (06027896), Yi-Ju Chen (06522324), Jou-An Pan (06440768)

Abstract

The purpose of our project is to optimize the action-value function on car racing
simulator provided by OpenAl gym using deep reinforcement learning. We model
the problem by training the car agent to predict estimated Q value rewards of
12 discrete actions using convolutional neural network. The data was generated
by allowing the agent to explore the race track environment. We improved the
training data by using expert supported dataset. More specifically we introduced
imitation learning techniques such as n-step reward, pretraining and margin loss.
Our model with expert demonstration using pretraining was able to improve the
baseline in terms of the rewards and success rates. Our results indicate that the
expert supported data set is able to achieve 1.75 times higher average rewards
after 200 iterations compared to the normal data set. We further demonstrate that
revising the Q value loss function to include n-step reward and margin cost helped
the agent achieve average rewards of up to 6 times higher compared to the baseline
in the first 200 iterations.

1 Introduction

Self driving cars have been an active area of exploration in domains such as transportation as a service
and food delivery networks. In this project we explore applications of self driving in autonomous
racing using deep reinforcement learning. To simplify the problem space, we selected a OpenAl gym
simulator to mimic the track and race car. The input to our algorithm is a 96 x 96 x 5 sequence of
grey scaled images of the race track and the output is the estimated reward values for 12 discrete
actions the car can perform at a given frame. Because this is posed as a reinforcement learning
problem, the car will have to self generate the input data by performing a mixture of random actions
and selecting the action that obtain the highest future discounted reward. We developed a baseline
model to approximate the reward function using a CNN network. In addition, we experimented
with generating expert demonstrated datasets by adding support for user keyboard control in the
simulator. The importance of this study is to investigate whether boosting agent self play with expert
demonstrations datasets can improve the learning efficiency.

2 Related work

There has been many research work related to path and motion planning for autonomous vehicles.
Some rule based algorithms performed a modified A* search algorithm to generate a kinematically
feasible path trajectory and then smooth the trajectory using nonlinear optimization. [3]. Supervised
learning methods included training a CNN model to generate driving controls by feeding in virtual
front view images of human driving [2]. One downside of traditional supervised learning methods is
the need for humans to label large amount of training data. Reinforcement learning approaches have
been introduced to allow agents to generate new data automatically and receive feedback based on

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

some reward function. For example, some continuous off policy Q learning approach such as deep
deterministic policy gradients (DDPG) was used to train race car agents in the TORCS simulator [7].
More recent approaches such as deep imitative reinforcement learning (DIRL) trained agents to drive
a simple race track using a mixture of supervised imitation learning and reinforcement learning [1].
Introducing expert demonstration have been shown to speed up the learning process of some deep
networks. [4].

3 Dataset and Features

Because the problem was approached using reinforcement learning rather than a traditional supervised
learning model, there is no input dataset that can be separated into training, test and validation splits.
The input dataset to the reinforcement learning model was obtained through self play and observation
of the Car Racing V1 environment provided by OpenAI Gym [6]. Car Racing V1 consists of a race
track and a race car that can perform continuous actions in R? consisting of [S, G, B]. S € [-1,1] is
the steering angle of the front axis wheels, such that the car is steering left when S < 0, steering right
when S > 0 and going straight when S = 0. G € [0, 1] gives the acceleration value and B € [0, 1]
gives the brake value. During the self exploration phase, the action space was discretized to be
S e {-1,0,1}, G € {0,1}, and B € {0,0.2}. Thus there are 12 total actions in total. Note that
since the acceleration the brake actions can cancel each other out, the max brake value was set to be
0.2. This allows the race car to be able to accelerate at a more fine grained value of 0.8.

Each frame of the environment consists of 96 x 96 x 3 RGB image of the racetrack. The images
were preprocessed by converting it to greyscale and the pixel values were scaled to be between 0 and
1. Finally, five consecutive frames of the environment were stacked together to form a 96 x 96 x 5
3D image that was fed into the reinforcement learning model.

As for the reward structure, the race car receives +1000.0/num_tiles points every time it overlaps
with a new tile. So if the track generated 300 tiles at the initialization of each game the positive
rewards are +3.3. In addition, we give an extra 1.5x reward multiplier if the racecar gives an
acceleration action of 1. Finally, after each passing of a frame the race car loses —0.1 points. This
will encourage the agent to move faster through the track and not veer off coarse.

Figure 1: One Frame of CarRacing-V1 environment

4 Methods

Our baseline method uses a standard deep Q learning algorithm as presented in “Playing Atari
with Deep Reinforcement Learning” [5]. The main objective of Q learning is to learn the optimal
action-value function @ op¢ (s, a), which denotes the maximum expected return achieved after taking
action q at state s and satisfies the Bellman equation:

Qs,0) = Egne [r +ymaxQ(s',)]s, a
a

We train the Q function by using functional approximation of the Q function parametrized by w as
Qopt (s, a;w), and minimizing the empirical squared loss function as follows

2

i . 1ol
JDQ(Q) mlan;S/ |:Q(S,a,(d) <T+Fya’€ag§li%}1§s(s’) Q(S y a ,W)>:|)
After each iteration, agent replay will minimize the sum of losses over a randomly sampled batch
of s, a, r, s’ datapoints from experience replay. This method is model free since it solves the
problem without explicitly constructing an estimate of the state distribution ¢ but rather uses empirical
distribution of sample paths. Additionally, the algorithm utilizes an off policy approach in which a
random action is execuated with probability e, that starts at 1.0 and decays gradually with a decay
rate of 0.9995 as the model learns the environment. Finally for backpropogation, we employed a
target network for the second () variable that updates itself to match the primary network every 5
frames. This will ensure the target reward does not fluctuate too much and stabilizes the gradient
descent process.

A 96 x 96 x 5 sequence of images is fed into the Q function approximator. It is then passed through
a Conv2d layer with 12 filters, kernel size (7 x 7), stride 3, and relu activation. It is then passed
through a max pooling layer of size 2. This is repeated again with same Conv2d and max pooling
layer, before it is flattened and passed to a dense layer of size 216 and relu activation. Finally, it is
passed through through dense layer of size 12 which represents the Q values for each combination of
actions.

As presented in “Deep Q-Learning from Demonstrations” [4], the imitation learning model will first
initialize the memory replay buffer with the expert demonstration datasets. The existing CNN model
will then randomly sample a mini-batch of n transitions from the replay buffer to perform gradient
descent on. This is repeated several epochs before the agent begins self play on the environment.
New transitions from the agent exploration are mixed with the expert demonstrations in the replay
buffer and gradient descent is further performed in each iteration. The demonstration dataset is never
removed from the replay buffer and is sampled at a higher frequency by adding sampling priority
weights. One thing to note is the cost function is modified to ensure that the agent learns the expert
action ag faster if the sampled transition is from the demonstration dataset. To achieve this a large
margin classification loss is added to Jpg:

Je(Q) = max[Q(s, a) + l(ap, a)] — Q(s, ar)

Here [(ag, a) is a margin function such that when a = ag the margin is 0 and some large positive
number otherwise. This loss will force the learned Q value of the expert action to be at least a margin
value higher than all other actions for the current state. If the input dataset was obtained through
agent self play, then the Jg loss is set to zero.

The last feature added was saving the n-step returned reward to the expert replay memory instead of
the immediate reward plus the max Q value of the next state as presented in Jpg(@). The n-step
reward is computed by summing the discounted rewards over the next 10 states:

Qn(s,a) =rs+yreg1+ -+ 7" rgn_1 + mgX'y"Q(sH_n, a)

This will help propagate the values of the expert’s trajectory to all the earlier states, allowing the
agent estimate a better Q value for the expert trajectory.

5 Experiments/Results/Discussion

For the baseline model, we found a learning rate of 0.001 and a mini-batch size of 16 achieved the
highest average rewards. The exploration rate € was set to 1.0 (fully random action) and decayed at
a rate of 0.9995 after each step in the environment. Figure 2 shows the moving average (window
size 20 iterations) of the training reward and success rate over 750 iterations. Success rate defines
the percentage of trials in which the racecar fully completes the track and touches all the tiles in
sequential order. The reward curve increased gradually until it peaked around 500 points in 400
iterations. The peak success rate obtained was about 0.37. For comparison a full completion of the
track can typically obtain rewards of above 1000.

avg reward of 750 iterations success rate of 750 iterations

baseline baseline
500 0.35 4

400

avg reward
w
&
5]
success rate

N
=3
o

100 0.05 4

100 200 300 400 500 600 700 100 200 300 400 500 600 700
Iteration Iteration

Figure 2: Baseline Average Reward and Success Rate

Next, we experimented with encompassing expert demonstration dataset into our training process.
The expert demonstration data included approximately 6000 replay instances (consisting of state,
action, reward, and next state tuples) that were created by letting a user input commands to the racecar
using a keyboard. The expert demonstration dataset only included successful runs and excluded all
instances where the expert made a mistake (e.g. ran off the track). For the first version of the model,
a pretraining step using 200 iterations of mini batch size 16 was introduced but the loss function did
not include the margin loss Jg(Q) or n-step replay. The expert demonstration data was sampled
with a sampling rate of 0.05 (probability of selecting expert memory). Figure 3 shows the average
reward and success rate obtained for the expert (orange) and the baseline (red). We observed that
expert demonstration model was able to obtain higher average reward (about 1.75x higher after 200
iterations) and success rate early in the training process but the two models eventually converged to
similar performance.

avg reward of 750 iterations success rate of 750 iterations

—— baseline
500 expert demo v1

—— baseline
0.354 expert demo v1

Al

/
0.204
015 ,\
0.10 \/ \
/f] /] /
/ 0.00 4 —/
100 200 300 400 500 600 700 100 200 300 400 500 600

Iteration Iteration

400

avg reward
w
&
5]
success rate

N
Q
=3

100

700

Figure 3: Expert Demonstration Learning First Version

The final model incorporated various methods presented in the paper including n-step reward of length
10, margin cost function of margin size 10.0, and pretraining using 200 iterations of mini batch size
16 using the expert dataset. Additionally the sampling rate of expert dataset was incremented over the
first 100 iterations of self play (from 0.05 to 0.15). As shown in figure 4 the expert demonstration
dataset achieved an average reward 6 higher than that of the baseline model in the first 50 iterations.
The model trained on the expert demonstration also achieved maximum reward that was 1.3 x higher
than that of the baseline and slightly higher (0.42 vs 0.38) success rate.

avg reward of 750 iterations success rate of 750 iterations

— baseline

o expert demo v2 /\/ /\ MA\
500 A /\/_\ f \

/

—— baseline

041l— expert demo v2 I f

o
w

avg reward
success rate
(=]
o

0.14

0.0 4

10ID 260 360 460 50‘0 660 700 100 200 300 400 500 600 700
Iteration Iteration

Figure 4: Expert Demonstration Learning Second Version

The most common failure cases for both the expert and the baseline models are sharp corners as
shown in figure 5. The race car will tend too overshoot the curves and veer off track. One small
difference was the model with expert dataset will approach sharp curves at a lower speed compared
with the baseline model. Another observation was the expert action will have more jerky motion
compared to the baseline model. For example, when going through a bend the expert outputted action
will flip between left steer and right steer for several consecutive frames.

Figure 5: Sharp Corner Scenario

6 Conclusion/Future Work

In conclusion, enhancing agent self play by adding expert demonstration data to the the Car Racing
Gym environment boosted the reward score of the agent by up to 6 times in the early parts of the
training process. Additionally, the max reward gained and success rate of the agent can also be
improved slightly. One downside to adding expert demonstration data was the trajectory planned
by the car tended to be less smooth. Additionally expert demonstrated datasets did not help with
maneuvering more complicated scenarios such as sharp V corners. Future work could be to introduce
a new reward structure that penalizes the agent for changing actions too frequently (to help with
smoothness). Another improvement to the model would be to introduce regularization to ensure the
performance does not fluctuate too much during the training process.

7 Contributions

Lear Du implemented and trained the model, in additional to contributing to the writing the final
report. Yi-Ju Chen performed the metric and error analysis. Jou-An Pan wrote the final report,
prepared the final presentation with the video demonstrations.

References

(1]

(2]

3

—

(4]

(3]

(6]

(7]

Peide Cai, Hengli Wang, Huaiyang Huang, Yuxuan Liu, and Ming Liu. Vision-based autonomous car racing
using deep imitative reinforcement learning. IEEE Robotics and Automation Letters, 6(4):7262-7269, 2021.

Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance for direct

perception in autonomous driving. In Proceedings of the IEEE international conference on computer vision,
pages 2722-2730, 2015.

Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practical search techniques in
path planning for autonomous driving. Ann Arbor, 1001(48105):18-80, 2008.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John
Quan, Andrew Sendonaris, Ian Osband, et al. Deep g-learning from demonstrations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Pierre. Car racing vl. https://github.com/openai/gym/blob/master/gym/envs/box2d/car_
racing.py, 2022.

Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep reinforcement learning for autonomous driving. arXiv
preprint arXiv:1811.11329, 2018.

