Deep learning-based capacity estimation for
lithium-ion electric vehicle batteries

Kevin Russell Moy
Department of Energy Resources Engineering
Stanford University
kmoy14@stanford.edu

Abstract

The capacity of lithium-ion batteries decreases over the lifetime of the battery. This
capacity fade is a marker for state-of-health (SOH) of the battery; as a battery is
used, its SOH decreases from 100% to 0%. Knowing the SOH and capacity fade
is important for the safe operation of lithium-ion batteries. This paper proposes a
deep neural network to predict electric vehicle (EV) battery capacity, given realistic
information (current and voltage) measured as the EV is driven. Between an MLP
and CNN model, the CNN model provides superior performance in predicting
capacity, able to achieve 0.015% error with only 2 minutes of current and voltage
driving data.

1 Introduction

As lithium-ion batteries are deployed and used in applications such as electric vehicles, their capacities
decrease (fade); this capacity fade is highly dependent on operating conditions such as driving patterns
and ambient temperatures [6]. Accurately estimating the capacity of an EV battery is important
to evaluate state-of-health (SOH) of the battery and ensure that the EV remains in safe operating
conditions; for example, the “mileage remaining” of an EV will change as a battery ages, so shorter
trips must be taken to avoid being stranded on the highway. Furthermore, EV batteries can be
recycled for “second-life” usage, where they are recycled and re-used for stationary grid energy
storage systems [3]. Estimating capacity is also important to understand how much capacity remains
for usage in the stationary grid storage second-life of the battery.

Capacity is also cumbersome to measure in real-life as it is done experimentally. In the laboratory,
the battery is charged to 100% state of charge (SOC), and then discharged at a very low current to
0% SOC. The battery is discharged as close to 0 Amps as possible, because discharged capacity
decreases as discharge current increases. It is unrealistic to assume that EV owners will wait 20+
hours for the EV to measure in real-time the capacity of its battery. Therefore, this paper leverages
laboratory-collected data via deep learning, using collected battery telemetry similar to that collected
during EV driving to predict capacity fade as a measure of SOH. The outcome will be a model that
estimates the capacity of the battery given operational voltage and current data taken at different
stages of the battery’s life.

2 Related Work

Previous papers have used convolutional neural networks, which used charging segments based on data
collected with constant-current/constant-voltage (CC/CV) charge and discharge [4, 8]. Conversely,
this project will focus on discharging data with current and voltage driven by more realistic electric

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



vehicle drive cycle profile data. Beyond this, other papers have used long short-term memory recurrent
neural networks (LSTM-RNN) to estimate capacity [10, 9]; however, as the dataset does not currently
span a long enough capacity fade trajectory (only having gone down to ~90% nominal capacity), so
we cannot yet use this method in any meaningful fashion.

3 Dataset and Features

The data for this project will be drawn from a dataset collected by the Stanford Energy Control Lab.
The dataset consists of data collected from several lithium-ion batteries cycled according to a protocol
which closely mimics electric vehicle driving. The data for each battery consists of two parts:

1. Cycle data, where one cycle represents a full discharge with an electric vehicle “UDDS”
driving current profile from 80% SOC down to 20% SOC, and charging at a fixed constant
current, and

2. Diagnostic data, which is taken at intermittent cycle numbers to measure capacity and
resistance of the battery.

Both parts consist of current and voltage data collected at 0.1 second resolution, and the battery
temperature was held constant in a thermal chamber at 23°C. We use data from four different cells:
W5, W8, W9, and W10. A detailed description of the experimental setup and dataset format can be
found in [7]. We can leverage the current and voltage data as they are indicative of resistance (e.g. via

Ohm’s Law: V/I =R) and the voltage will change for the fixed UDDS current profile as the battery
ages.

3.1 Pre-processing

We use the cycle capacity data as the output. The diagnostic capacity values are only measured at
intermittent cycle numbers, so the battery capacity is linearly interpolated between these values for
each intermediate cycle integer number. The capacity is normalized to the nominal cell capacity of
4.85 Ampere-hours (Ah) and reported as a percentage out of 100. As an example, the capacity values
for each cycle for the W8 cell are shown in Figure 1a.

102 3 L( 1
o Capacity Test Data
—Interpolated

15
5]

©
3

Current [A]

3043 0. |—Sample 1
— Sample 2

Sample 3
—Sample 4

Normalized Capacity [%]

P . R ) . 3.9 0.5
0 100 200 300 0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500
Cycle Number [-] Datapoint [0.1s] Datapoint

() (b) (©

Figure 1: (a) W8 cell data for capacity as a function of cycle number. Note capacity can go above
100%, since the cell started above nominal capacity. (b) Example of W8 cell data current/voltage
segment. (c) Example of four input samples, of concatenated normalized voltage and current.

We use the cycle discharge data as the input. For each cycle, the UDDS discharge current and voltage
are segmented into 1200 datapoints (120 seconds, or 2 minutes) each. An example of a pair of current
and voltage segments is shown in Figure 1b. These segments overlap by 600 datapoints. As each
cycle lasts approximately 5 hours (or 180,000 datapoints), each cycle has approx. 300 corresponding
current/voltage segment pairs. The current is normalized by the nominal capacity (4.85Ah) and the
voltage is normalized by the nominal voltage (3.63V) in order to keep the values of the input between
[—1, 1]. Four examples of inputs are shown in Figure Ic.

4 Methods

This paper uses two different deep learning models to estimate capacity as a function of measured
current and voltage. Both models are implemented in TensorFlow [1] and Keras [2], and trained on



this loss function using the Adam optimization algorithm with default hyperparameters. The W8 cell
dataset is used as training and validation data with an 80%-20% train-dev split, and the other three
cell datasets (W5, W9, and W10) are used as test data. We make the assumption that the dev and test
sets are drawn from the same distribution given that all cells are nearly identical, and that within the
small time window of current and voltage segments drawn from for the model inputs, that the cells
behave nearly identically to each other.

The metric used to compare between the different methods will be the root-mean-squared percent
error (RMSPE) of the test set. For example, given M test set examples and M predictions 7 on
ground-truth labels y, the test set performance is given by

M
1 ~
RMSPErest = || 77 ?:1 (yi — 5i)* * 100% (1)

As the original capacity is scaled out of 100%, rescaling by this provides the RMSPE.

4.1 Multi-Layer Perceptron (MLP)

The first approach uses a standard fully-connected MLP. Each pair of current and voltage segments is
concatenated into a 2400 x 1 vector as the input to the neural network. KerasTuner [5] is used to
tune the number of hidden layers as well as the number of nodes in each hidden fully-connected layer
(details in Appendix 1). From random search of hyperparameter values in KerasTuner, the following
fully-connected hidden layer sizes are used: [1200, 1200, 2400, 200, 20], each with ReLU activation
on each node. The output layer is a linear regression on the output of the last hidden layer to predict
capacity. A diagram of the network structure is shown in Figure 2. The model is trained for 5000
epochs with a batch size of 500. !

npdt (Cugens Dense layer, Dense layer, Dense layer, Dense layer, Dense layer, Dense layer, Output

1200 units 600 units 600 units 200 units 10 units 1 unit Size:1x1

and Voltage)
Size: 2400x 1

Figure 2: Plot of entire MLP model architecture.

The loss function for the MLP model is the mean-absolute error (MAE) between estimated capacity
y; and true outputs y; across all training examples K as shown in Equation 2. The mean-squared
error (MSE; see Equation 3) showed poor convergence and extreme overfitting to the training data
(see Appendix 2), so MAE was used for its superior results.

1 &
/:__K ;:1|Z/z—2/z| 2

4.2 Convolutional Neural Network (CNN)

The second approach uses a CNN. The structure was hand-tuned given the many parameters chosen,
e.g., number of layers in each CNN, but also the layer type in each layer. For example, the Separable-
Conv1D layer in Keras was originally considered as an option for the first hidden layer, as it treats
each input channel separately before combining them, but it did not provide fast loss convergence
during training, and so is not presented in this paper (but is available in the GitHub repo). > However,
we use a similar concept from SeparableConv1D in the final architecture. The current and voltage
are treated as separate 1D channels of dimension 1200 x 1, each with its own CNN block shown in
Figure 3.

In general, the network was designed so that the number of parameters within each was evenly
distributed; for example, making sure that the output of the CNN block was small enough so that

'"Model can be found at https://github.com/kevinrussellmoy/cs-230-final-project/blob/
main/MLP.ipynb.

’SeparableConviD  model can be found at https://github.com/kevinrussellmoy/
cs-230-final-project/blob/main/CNN_MSE_v2.ipynb.



1D Conv layer 1D Conv layer 1D Conv layer 1D Conv layer
32 filters, 16 filters, 8 filters, kernel 8 filters, kernel
kernel size=10 kernel size=5 size=5 size=5

Input

Output
Size: 1200x 1 ey Size: 264x 1

MaxPool1D, MaxPool1D, MaxPool1D, MaxPool1D,
pool size=4 pool size=2 pool size=2 pool size=2

Figure 3: Plot of CNN block. Unless otherwise noted, all hyperparameters left at default values (e.g.
valid padding for all 1D Conv layers.)

the densely-connected layers did not contain too many parameters. The network hyperparameters
were then hand-tuned to minimize the output loss. The output of each CNN is concatenated and
then combined in a series of densely-connected layers with ReLU activation. As in the MLP model,
the output layer is a single-output regression for the estimated capacity. A diagram of the entire
model structure is shown in Figure 4. For use in this model, the capacity values are scaled using the
MinMaxScaler in sklearn to have minimum 0 and maximum 1 across all samples.

The loss function for the CNN models is the mean-squared error (MSE) between estimated capacity
; and true outputs y; across all training examples K as shown in Equation 3.

1 K
.
£=E;(yi—y» 3)

The model is trained for 500 epochs with batch size 92. 3

Input (Voltage)
Size: 1200x 1

CNN block

Dense layer,
100 units

Dense layer,
1 unit

Output
Size:1x1

Concatenate

Input (Current)
Size: 1200x 1

CNN block

Figure 4: Plot of entire CNN model architecture with CNN block denoted as in Figure 3.

5 Results

The models are evaluated on the W5, W9, and W10 cell test datasets, and the test RMSPE is used to
compare them. The results are shown in Table 1.

Table 1: Validation Results

Model | Test Data RMSER
(%]
W9 1.15
MLP W10 2.22
W5 6143.19
W9 0.015
CNN W10 0.020
W5 83.16

Figure 5 shows the predicted (estimated) CNN model output vs. actual capacity for the test data cells,
while Figure 6 shows the MLP model output vs. actual capacity. We can see that both models perform
best on the W8 cell, followed by the W10 cell, as evidenced by how well the capacity trajectory is
traced out by both models. The W5 cell capacity is poorly estimated by both models, predicting

*Model can be found at https://github.com/kevinrussellmoy/cs-230-final-project/blob/
main/CNN_final_model.ipynb.



capacities well in excess of 100% and below 0%. This may show that our initial assumption was
incorrect and that the W5 data represents some distribution of current and voltage segments not seen
in the W8, W9, and W10 data. Therefore, future work would include more diverse data from different
cells in the training dataset.

Comparing the two models, the CNN performs uniformly better than the MLP, and appears to be
more robust to the distribution of the test dataset, as seen by the lower RMSPE in W5 from the CNN
compared to the MLP. Additionally, the MLP model took 5000 epochs to train compared to the CNN,
which only required a tenth of the time.

—— Estimated W9 —— Estimated W10

—— Estimated W5
~—— Actual W9 — Actual W10

400| — Actual W5

98

96

Capacity [%]
Capacity [%]
©
8
Capacity [%]

94

92

0 1000 2000 3000 4000 5000 6000 7000 [ 2000 4000 6000 0 2000 4000 6000 8000
Datapoint [-] Datapoint [-] Datapoint [-]

() (b) (©

Figure 5: Validation results for the CNN trained on W8 cell data on (a) W9 cell data for capacity, (b)
W10 cell data for capacity, (c) W5 cell data for capacity. Note capacity can go above 100%, since the
cell started above nominal capacity.

102 —— Estimated W9

—— Actual W9

1000{ —— Estimated W5
—— Actual W5

100
800

98|
600

96 |

Capacity [%]
Capacity [%]
©
8
Capacity [%]

400

94

200
—— Estimated W10

—— Actual W10

92|

0 10000200003000040000 5000060000 70000 0 20000 40000 60000 0 20000 40000 60000 80000
Datapoint [-] Datapoint [-] Datapoint [-]

(a) (b) (©

Figure 6: Validation results for the MLP trained on W8 cell data on (a) W9 cell data for capacity, (b)
W10 cell data for capacity, (c) W5 cell data for capacity. Note capacity can go above 100%, since the
cell started above nominal capacity.

6 Conclusions

Two deep learning models were developed and presented to solve the problem of estimating capacity
from current and voltage measurements that could reflect real-time data during EV driving. Of these
two, the CNN provides the best balance of accuracy, as measured by the RMSPE of the predicted
capacity, as well as the computation time, and may even overfit to the training data as exhibited by
the W5 test results. Meanwhile, the MLP can only discern general trends in the capacity fade among
all cells. We hypothesize that the CNN is able to treat the current and voltage as separate signals
and reduce the signals down to key features in their separate 1D CNNs, and so can fit better to the
training data.

Future work would include incorporating more experimental data into the training set, as well as
different pre-processing methods, such as employing the Fourier Transform to convert the current and
voltage data into their frequency components as model inputs. We could also consider hyperparameter
tuning within the CNN framework, adding more layers of different sizes, as well as tuning the length
of the input current and voltage segments. Finally, as more experimental data is collected on these
cells, we would like to incorporate some memory or dependence on the previous known/estimated
capacity state to predict future capacity, which would lend well to some recurrent neural network
architectures over these longer capacity fade trajectories.



References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

F. Chollet. keras. https://github.com/fchollet/keras, 2015.

H. Engel, P. Hertzke, and G. Siccardo. Second-life ev batteries: The newest value pool in energy
storage, May 2019.

Y. Li, K. Li, X. Liu, and L. Zhang. Fast battery capacity estimation using convolutional neural
networks. Transactions of the Institute of Measurement and Control, 2020.

T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al. KerasTuner. https:
//github.com/keras-team/keras-tuner, 2019.

E. Paffumi and G. Martini. Real-world mobility and environmental data for the assessment of
in-vehicle battery capacity fade. World Electric Vehicle Journal, 12(1), 2021.

G. Pozzato, A. Allam, and S. Onori. Lithium-ion battery aging dataset based on electric vehicle
real-driving profiles. Data in Brief, 41, 2022.

C. Qian, B. Xu, L. Chang, B. Sun, Q. Feng, D. Yang, Y. Ren, and Z. Wang. Convolutional
neural network based capacity estimation using random segments of the charging curves for
lithium-ion batteries. Energy, 227, 2021.

G.-W. You, S. Park, and D. Oh. Diagnosis of electric vehicle batteries using recurrent neural
networks. IEEE Transactions on Industrial Electronics, 64(6), 2017.

Y. Zhang, R. Xiong, H. He, and M. G. Pecht. Long short-term memory recurrent neural network
for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular
Technology, 67(7), 2018.



Appendix 1: KerasTuner configuration

The KerasTuner tuner for the MLP was configured with the following values. Note the network starts
with “large” hidden layers with size close to the input size (2400 x 1), while the succeeding layers
narrow the network down before the single regression output layer. The tuner ran for 5 epochs and
two runs (one train of 5 epochs per run) for each model configuration.

1. Number of “large” hidden layers: {1,2,3}
2. Number of nodes in each “large” hidden layers: {600, 1200, 2400}

3. Number of nodes in second-to-last hidden layer: {50, 100,200}
4. Number of nodes in second-to-last hidden layer: {10, 20,50}

Appendix 2: MLP results with MSE loss

The KerasTuner tuner for the MLP with MSE loss returned the following layer sizes for the hidden
layers: [1200, 600, 600, 200, 10].

160 —— Estimated W9 —— Estimated W10

—— Actual W9 1.00 —— Actual W10 100+
99| 0.99
98 F098 90

| 0.95

\\; 0.94

~—

93/ T~ 0.93

0 10000200003000040000 5000060000 70000 0 20000 40000 60000 0
Datapoint [-] Datapoint [-]

Capacity [%]
Capacity [%]

—— Estimated W5
—— Actual W5

20000 40000 60000 80000
Datapoint [-]

(a) (b) (©

Figure 7: Validation results for the MLP trained on W8 cell data with MSE loss on (a) W9 cell data
for capacity, (b) W10 cell data for capacity, (c) W5 cell data for capacity. Note capacity can go above
100%, since the cell started above nominal capacity.

0.126 —— Training

—— \Validation
0.125

0.124

Loss [%]

o o
[
N N
N w

0.121

0.120

0 1000 2000 3000 4000 5000
Epoch [-]

Figure 8: Plot loss as a function of epoch for MLP trained with MSE loss, exhibiting clear overfitting
to the train data.



