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Abstract

Our goal was to make a model that changes genre in symbolic music. We had MIDI
database of 3 Genres (Classic, Jazz and Pop) and we implemented a model based
on CycleGAN[1] and then extended it to StarGAN[4] to change Genres among
them.

1 Introduction

Genre Transferring from one domain to another can have interesting usage in real world. For instance,
it can be used by musicians who create cover songs. They can user genre transfer to roughly see how
a song will be heard in other style and choose most appropriate genre to continue their work.

The transfer should be clearly noticeable, while retaining enough of the original melody and structure
such that the source piece is still recognizable. While style transfer has been studied in detail for
images, its still novel for music. We have used CycleGAN[1] to transfer music genre such as pop and
classic to one another as a baseline. We extended this work using StarGAN[4] architecture.

To input MIDI files to a our generator and discriminator models, they must first be converted into a
matrix, the so-called piano roll representation, where columns represents time-steps and each record
in this column shows if note is played or not. We omit the volume information by setting all values to
127, such that every note has the same loudness. At the and we input 4 piano rolls of size 16x84 and
for generator we add target domain information as well. At the end generator generates same size
piano roll but in target genre and discriminator tries to guess input song’s genre.

2 Related work

There were several works of transferring object from one domain to another. Mostly those works are
for transferring images. Gatys et al. [7] showed concept of neural style transfer from one image to
another. In CycleGAN[8] pair of generators transforms images from domain A to domain B. Brunner
et al. [1] used CycleGAN approach for music domains.

Main downside of this approach is that it is somehow inefficient. To learn all mappings among n
domains n(n— 1) generators must be trained. To approach this issue Choi et al.[4] proposed StarGAN,
a scalable approach capable of learning mappings among multiple domains. As demonstrated in Fig.
1, StarGAN model is trained on multiple domains, and with a single generator learning the mappings
between all of them. The generator is not fixed to transforming from domain A to domain B, but
instead it takes target domain information as well as source data and generates new data that belongs
to target domain.
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(a) Cross-domain models (b) StarGAN

Figure 1: Comparison of cross-domain models and StarGAN. (a) To handle multiple domains,
cross domain models should be built for every pair of domains. (b) StarGAN is capable of learning
mappings among multiple domains using a single generator.

3 Dataset and Features

We are using Dataset [2] provided by Brunner et al. in their music genre transfer paper [1]. They have
pre-processed MIDI files into numpy arrays. MIDI is a symbolic music representation that resembles
sheet music. Sampling rate is 16 time steps per bar. 84 notes between C1 and C8 have been used.
The piano-roll for one bar is of size 16 x 84. Since music has temporal structures we need to consider
the relation of consecutive bars. Phrases consisting of 4 consecutive bars will be used as training
samples. Thus, the resulting samples are of size 64 x 84. There are about 10,000 samples each for
jazz, pop and classic.

For generator model we have to pass target domain label as well. Our approach for target labeling is
one hot encoder with length n4 - number of domains.

4 Methods

Our goal is to train a single generator G that learns mappings among multiple domains. To achieve
this, we train G to translate an input data = into an output data y conditioned on the target domain
label ¢, G(x,¢) — y. We randomly generate the target domain label ¢ so that G learns to flexibly
translate the input data. We also introduce a classifier that allows a single discriminator to control
multiple domains. Our discriminator produces probability distributions over both sources and domain
labels D : & — {Dgrc(x), Deis(x) }.

Adversarial Loss. We use following adversarial loss:

Lodv = Eg[log Dgre(2)] + Eg c[log(l — Dspe(G(z,€)))] @)

G generates music conditioned on input data x and target domain class ¢ . Dg,..(z) is probability
distribution over sources. The generator wants to minimize this objective, while the discriminator
wants to maximize it.

Domain Classification Loss. If we have input music data z and target domain ¢, our goal is to
generate y = G(x, ¢), which is classified as c.

We use following Classification loss for real data:
le = Em,c’ [_ log Dcls(cl|x)] (2)
where D;s(¢'|x) is probability distribution over domain labels computed by D. When minimizing it

D learns to classify real music z to its corresponding original domain ¢’. Loss function for for fake
music data is following:

Ef

cls

= E, [ log Dus(c|G(z,c))] 3

G minimizes this objective and generates music data that will be classified as target domain c.



Reconstruction Loss. When using only adversarial and classification losses described above, G
generates music data that should be realistic and classified as correct target domain. But, this does
not guarantee that translated data preserve the musical content of its input data while changing only
the domain-related part of the inputs. To address this problem, we apply following cycle consistency
loss to the generator:

‘C’:ec = ]EI’C,C/[HCL‘ - G(G(LL‘, C)a CI)Hl] 4)
where G takes the generated data G(z, ¢) and the original domain label ¢’ and tries to reconstruct the
original data . We use L1 norm as our reconstruction loss. We use a same generator twice, first to
translate an original data into the target domain and then to reconstruct the original data from the
translated data.

Full Objective Final losses are written as following

ED = _Aadv['adv + )\cls‘cgls (5)

['G = Aadv['adv + )\cls['{ls + /\recﬁ'rec (6)

where Agqv, Acis and A are hyper-parameters for relative weighting of corresponding losses. We
used A\yqy =1, Acis = 10 and A, = 10 in our experiments.

5 Experiments/Results/Discussion

Our first attempt to make a working instance of described model had following problem. We
monitored generator loss and discriminator loss with tensorboard and had results shown on figure 2.
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Figure 2: discriminator and generator loss

We periodically saved generated samples with following method: if note value is more then some
threshold (in this case 0.5) we had note at full volume, if note value was below threshold we
set note volume to 0 which means no note. We saw that after some point midi player was not
playing generated files. We found out that all notes were set to 0. To monitor this we added
number_of_notes parameter, which is average number of notes in current batch and saw following
result (figure 3)

As we can see generator tends to generate all O values. We could not figure out the reason of this
behavior. We tried other GAN type (Wasserstein GAN objective with gradient penalty [9]) and
various hyper parameters but the result was the same.

At some point we added another term to generator loss

Ediff = |Nnotes - Navg_real_notes| (7)

where Npotes is number of generated notes and Nyog_real_notes 1S number of notes in average real
data. The closer number of generated notes is to average number of real notes, the less is loss. So we
thought this term will help model to generate desired number of notes.

After adding this term we had following picture (figure 4)
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Figure 3: average number of notes generated by generator
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Figure 4: average number of notes generated by generator

This helped generator to generate certain number of notes but unfortunately it converged to generate
same data for every input. We can say that there is some fundamental problem in implementation
of our algorithm. One possible candidate for this problem is concatenating music data with target
music label. Our approach was to flatten music data into (batch_size, time_step x pitch_range +
number_of_domains) neurons and add dense layer to reduce it to (batch_size, time_step
pitch_range), after that convert back to (batch_size, time_step, pitch_range, 1) tensor and on
top of that apply convolutions. We think that this dense layer losses music structure information and
we need to implement other approach for music data and target label merging. Unfortunately we
spent all time on working on structure with dense layer and had not time to experiment with other
variants.

6 Conclusion/Future Work

At this point we can summarize that StarGAN approach for music generating is theoretically sound.
This method proved itself with image generation and as we think is better approach than algorithms
with cross-domain generator models. Main advantage of StarGAN is single generator that reduces
training time during training stage and required memory during inference stage. We are sure that
having sufficient time and resources StarGAN can be successfully applied to music generation and
we hope our current work will be at least very small step towards achieving this goal.

7 Contributions
Lasha Gigitelashvili - Working on code, final paper, final presentation.
Naveen Kumar - Working on code, final paper, final presentation.
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