Reinforcement Learning on Hearts

Theo Culhane
Department of Symbolic Systems
Stanford University
tculhane@stanford.edu

Abstract

Deep reinforcement learning on a zero sum game is nothing new, but very few of
the papers that [was able to find dealt with games of more than two agents. In this
paper, I explore how deep reinforcement learning can be applied to the 4-person
game of hearts, using Deep Q Learning. I conclude that Deep Q Learning is a good
candidate for solving a 4-person, imperfect information zero sum game such as
Hearts, but that the computational power available to me was insufficient to fully
solve it in this instance.

1 Introduction

I enjoy playing Hearts with my family, but most computer players are generally terrible. I was curious
why computerized Hearts players are so unskilled, while the computer opponents for games like
chess and go are excellent (to the point that even a cheap consumer chess app these days is better
than most human grandmasters [[1]]). While some of this can be attributed to chess being game of
perfect information, and card games such as Hearts rely on randomness and incomplete information
for any given player, I realized that there might be more to the story. Specifically, I was unable to find
much work outlining how reinforcement learning applies to games of more than 2 players, meaning
that the average programmer is unlikely to come across a robust, winning algorithm for games like
Hearts, since they would have to search very hard to find anything even passable. I decided to explore
how Deep Q Learning applies to Hearts, in which 4 agents compete for the same value instead of
2, making the value estimation slightly more complicated, and the rules create opportunities for the
scoring to be slightly off from zero sum (such as shooting the moon allowing the total score to be
78 instead of 26). Beyond that, Hearts is a good candidate for deep RL, because the state space of a
hand of cards is very large, and so some method of reducing the size of the state space is necessary to
run an RL algorithm in any realistic amount of time. The input for my algorithm is a simple Hearts
simulator, where at each time step the current state of the game is distilled into a 217 entry vector
including a 52 entry one hot encoding for which cards have already been played in a game, 52 entries
dedicated to a one hot representation for what cards are currently in play in a particular round, or
"trick", 4 entries dedicated to a one hot encoding for who the current player is, 4 entries dedicated to
a one hot representation of what suit the current trick is, 52 entries dedicated to a one hot encoding
for what cards the player has in their hand, one dedicated to a boolean for whether it is possible for
the player to "follow suit", and 52 dedicated to what the current action being evaluated is. The play is
then evaluated, and for each play the model outputs an expected reward for making that particular
play, which will be a floating point somewhere between -26 and 103 (although very few predictions
should be greater than 26).

The program shares a basic game engine with a project I am doing concurrently for CS229, in which
I am doing reinforcement learning on the card game Spades. However, the actual algorithm used is
different for the two projects, as the Spades project uses a shallow Q network and Monte Carlo Tree

CS230: Deep Learning, Spring 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Search, and this project uses a deep Q network with no MCTS, and the game engine is modified for
that project to account for the differences between Spades and Hearts. Note, however, that due to the
basic premise of the problems being very similar, the related work section is very similar.

2 Related work

The current approach to reinforcement learning in games with randomness as a key premise was first
seen in TD-Gammon [2]], which played the game backgammon and used T'D(\) using two steps
of look ahead combined with standard TD learning to determine the best action at each move of
the game. However, TD-Gammon changed the field by using a shallow neural network to learn a
more complex evaluation function, instead of using some form of hard coded evaluation function or a
simple Q table. This allows a simpler program to evaluate a larger state space, and to learn general
patterns faster. This approach was then refined into what is now the state-of-the-art approach for
reinforcement learning on games by DeepMind in their AlphaGo/AlphaGo Zero/AlphaZero series [3]].
These programs started with the TD-Gammon approach of looking several moves into the future and
then using an evaluation function to determine which of those moves leads to the best result, but made
two significant improvements. First, AlphaZero uses a better heuristic search algorithm, Monte Carlo
Tree Search, to find which moves it should evaluate, whereas TD-Gammon’s search algorithm is fairly
simple. MCTS finds high-potential future moves, and only evaluates those, ignoring low-potential
moves, which significantly cuts down the computation time expanding the search tree and also allows
deeper searches on the actions that are likely to be useful, allowing for an overall stronger algorithm.
Second, and more important, AlphaZero used a significantly deeper network to estimate the expected
return of certain actions, which allows more complexity in what the network is able to evaluate. This
allows the computer to use less prior knowledge about the game, as the input can be more strategy
neutral, such as board positions instead of human designed feature maps. By removing the element of
human decision making, AlphaZero pursued strategies that no human had ever given much thought to,
and eventually led to a much better strategy than any human had ever played, hence how consistently
AlphaZero is able to beat human Go grandmasters. MCTS+Q has been replicated in several more
works that heavily informed my work. One is RLCard[4], which focuses on card games such as Hold
"Em, Blackjack, and Gin Rummy among others as examples of games in which a player has imperfect
information about the state of the game, but does not cover either Hearts or Spades. Another is A
Simple Alpha(Go) Zero Tutorial[S]], which uses the board game Othello to illustrate the AlphaZero
approach, but which focuses on perfect information 2 player board games and so deviates from my
actual implementation of a 4 agent imperfect information game. Tackling the UNO Card Game with
Reinforcement Learning[6] was particularly helpful, and applies MCTS+Q to Uno; this is the closest
work I found to the implementation that I ended up using. However, this project used a Q table
instead of a network for Q learning, which would not be feasible in Hearts as the state space is far too
large.

3 Dataset and Features

The dataset is generated entirely through self play, with dataset generation progressing in two steps.

In the first step, pretraining, 5000 games are generated using the baseline model, which is a greedy

algorithm designed to simulate how a beginner plays. The data is then trained on for a total of 13

cycles of 20 epochs each. Note that it is important that it does 13 cycles of 20 epochs, instead of

simply 260 epochs, because the target outputs during a training cycle relies on the current predictions

of the evaluation function to solve Bellman’s equation y = s +ymaz(Q(s’, a’), and so these targets
a

must be recalculated several times throughout training for the algorithm to learn the proper targets. 1
chose 13 because there are 13 tricks in a given game, and so max () values can only influence at most
13 targets ahead of them, if the max @ value is that of a terminal state. After pretraining, the dataset
is reset, and training begins. The dataset for training is used by stepping forward in a game one trick
at a time, and then adding that trick from each players perspective to a replay, and randomly sampling
800 datapoints out of the replay as a minibatch to train on. The replay extends back for a maximum
of 100 games worth of datapoints, which is enough that new episodes aren’t over-weighted in the
algorithm’s learning, but is small enough that datapoints won’t grow too stale to be useful before
being evicted from the replay.

When a datapoint is added to the replay, it is in the form (s;, r;, s}, t5), where s; is a vector representa-
tion of the state from player i’s perspective and the action player i took, the same vector representation
described above in the Introduction section (a concatenation of the s and @ in Q(s, @) such that the s;
stored in a datapoint is ready to put directly into the evaluation network), r; is the reward received
from taking action a; from state s;, s, is the next state, the state reached by taking action a; from
state s;, and ¢ is a marker denoting whether state s; is a terminal state. This means that any time ¢4
is true, s; will be NULL, and any time s} is not NULL, ¢, will be false. The reward r; is determined
by taking the point differential from state s; to state s} for player i. So, for example, if player 1 had 3
points in state s, and 5 points in state s}, then 7, would be —2 (negative because points are bad in
Hearts), and 79, 3, and 74 would all be 2 (no more than one player can score points in a particular
trick except in special circumstances, such as the use of a rule called "shooting the moon", and so it is
usually the case that three of the 4 players have the same reward, and the fourth player has negative
that same reward).

4 Methods

The algorithm follows a standard Deep Q Learning model. Start out by initializing a Q network
of the correct size and shape (more on what the correct size and shape is, as that was the subject
of some of my experimentation), and initialize a replay memory pool, which I used a Python list
for since order into memory matters for my implementation. Next, I generate the 5,000 pretraining
games described above, and add them all into my replay. Because the dataset is generated entirely
through self play, I saw significantly better results significantly faster after implementing pretraining,
because it helps to mitigate the cold start problem that many algorithms that use self play as their
primary source of data struggle with. I train on the full replay for 13 iterations of 20 epochs, and
then reset my replay and begin training. For training, in each episode, I generate a new random start
state for the game by randomly initializing a deck of cards and then dealing it out to each player. I
then loop over the tricks in the generated game, and in each trick loop over each player who plays
according to an epsilon-greedy action algorithm. In epsilon greedy, at each state s, player takes
valid action a such that a = maxzQ(s, a) with probability 1 — €, and with probability epsilon instead

takes a random valid action a. The algorithm then observes the reward r and state s’ that taking
action a from s took it to, and adds the experience (¢, r, s’,t) to the replay, with ¢ being the same
concatenation of s and a as described above, and ¢ being a boolean for whether state s was a terminal
state. As noted above, s’ will be NULL whenever ¢ is true. Also note that due to implementation
constraints, s’ wasn’t specifically observable immediately, and so instead there was a cache that
would handle adding (¢, r, s', t) to the replay once either s’ had become observable or ¢ was true, but
the algorithm should work the same regardless of the specifics of the implementation here. Next,
a random minibatch of 800 datapoints was sampled from the replay, and each of these datapoints
was processed to generate a target y according to the function y = 7 + (1 — t)y(max(Q(s', a’))), in
a

which t is evaluated as an integer instead of a boolean and this equation short circuits such that if ¢
is 1, i.e. true, y(max(Q(s’,a’))) would be multiplied by 0 and is not evaluated, which is important
(l/

because s’ would be NULL in this event and so finding max(Q(s’, a")) would be non-nonsensical.

Finally, the model is trained on this minibatch of (¢, y) pairs using mean squared error, i.e. the loss
m

function L = L Z(Q(c(i)) — y)2, where m is the size of the minibatch (in this case, 800), and
i=1

(c(i), y(i)) is the 7th pair. This algorithm is run until either 5000 games have been simulated, or until

the change in loss from one trick to the next is less than .1 for 5 tricks in a row.

5 Experiments/Results/Discussion

Due to the nature of deep Q learning, there were too many hyper parameters in this algorithm to
feasibly test different values for all of them, so for many I accepted default values or the values
suggested in the literature without testing variations. For maximum number of possible episodes,
I tried to pick a limit that would hardly ever get reached, but that would be low enough that if
the algorithm failed to learn it would be able to hit the upper limit before wasting too much time
waiting for convergence. Convergence generally occurred between 200 and 500 episodes, and so I

picked 5000 as the upper limit of episodes (10x the maximum expected convergence time). I chose
5200, or 100 full games for max replay size, because A Simple Alpha(Go) Zero Tutorial[3| trains
on 100 full games during each training cycle. Finally, my algorithm uses Adam as its optimization
algorithm, and I used most of the TensorFlow defaults for Adam, operating on the belief that the
TensorFlow defaults are well tested-except that I changed the epsilon value when I had an issue with
instability in my loss, and one helpful blog post[7] suggested that changing Adam’s epsilon value to
.1 from the default might help. The hyper parameters that I spent the most time tuning was -y in the
Bellman Equation, number of training epochs to train per training iteration, frequency of training,
mini batch size, number of layers in my network, and various aspects of each layer like activation and
regularization which I tested in groups.

The ~ value in the Bellman equation had the largest impact on my results. I tried values between 0
and 1 inclusive in increments of .1, expecting from my prior knowledge of how I play cards that the
optimum value would likely be .6 or .7, since it is important to think several rounds ahead during
Hearts, but due to the unpredictability of what other players have in their hand and what they do,
thinking too far ahead can lead to an overly conservative strategy. Upon trial, however, I found that
of 1 - no discount on future rewards at all - gave the best results, meaning that the computer wins
most frequently when it considers to the last trick starting when it evaluates the first trick. There was
an almost linear relationship between ~y and performance, with v = 0 having equal performance to
a fully random, strategy-less algorithm such as the first baseline. The next biggest changes came
from number of epochs trained for during each training cycle. I found that a single epoch led to the
best results, with more epochs tending to lead to over-fitting on the training data and therefore worse
performance at test time. Excessive epochs also led to very low loss being reported and very high
stability in the loss being calculated, and since the program decides when to stop training based on
stability of loss, higher epoch counts also halted training prematurely, compounding the problem of a
lack of generalization since more training time leads to a wider variety of scenarios to train on, by the
nature of generating the dataset through self play. I found a similar problem with over-fitting when I
tried to train after each player had played, and this problem decreased when I trained only after each
trick. For minibatch sizes, I found that training time scaled roughly linearly with minibatch size, and
I tried values between 52 (one full game’s worth of datapoints) and the full replay, testing 104, 208,
520, 800, 1000, 1500, 2080, and 5200. Anything below 520 gave unpredictable (and nearly useless)
results, and anything above 800 gave roughly the same results, with only very slightly increased
stability as the full 5200 was approached. Therefore, 800 seemed like the best option, since it was
fast enough for training and testing different ideas to be feasible, but gave almost as good of results
as training on the full replay. For the number of layers in my network, I based my decision heavily on
the number of layers used in A Simple Alpha(Go) Zero TutoriallS]], which used an 8 layer network. I
also tried 5, 10, and 16, before settling on 8. I found that 5 layers weren’t able to differentiate subtly
different positions, and specifically struggled to tell whether a particular action was "following suit"
(meaning that the suit of the card played is the same as the suit of the card led), or if the action was
instead "dumping", (meaning that the suit of the card played is different from the suit of the card led),
which in Hearts is a critical difference that determines whether it is possible for the player to win
the trick or not. Therefore, 5 couldn’t learn much more than the general heuristic that in Hearts high
cards are bad and low cards are good. By contrast, 10 and 16 were able to over-fit to the training
data, which like too many epochs, worked extremely well on familiar positions but very poorly in
new situations; in Hearts, where there as so many possibilities, this meant consistently poor results.
Therefore, I returned to 8, which was expressive enough to capture the subtleties in positions but did
a good job of learning general patterns of play instead of over fitting to the data points. Finally, I
worked on fine-tuning the parameters that my network used. For number of nodes per layer, I noticed
that A Simple Alpha(Go) Zero Tutorial5]] used powers of 2 for all of his layer sizes, and so I decided
to do the same, and I also noted that, like many machine learning projects, they also had their layer
sizes decrease or remain the same size at each successive layer, and so I also did the same with that.
I found that a layer size of 2048, followed by 3 layers of 1024, then 2 layers of 512, then 3 layers
of 256 gave the best results. I tried several tests with initial layers larger than 2048, such as a 4096
node layer, but this led to excessive training time with almost no increase in accuracy. Smaller layers,
like 128 and even one as small as 64, decreased accuracy too much to justify the speed. For layer
activation, I started with ReL.U for all of the layers, but found that my accuracy suffered greatly as
training progressed, and by examining the weights discovered that this was due to a "dying ReLU"
problem, in which weights became negative, leading to a saturation of the max (0,) operation which
means that some nodes always returned 0. Therefore, I switched to a Leaky ReLLU activation with

an « of .03 (i.e. the operation max (.03,)), which allowed the network to recover from the dying
ReLUs, and create more stability. Finally, partway through training I saw a few occasions where
one anomalous datapoint would significantly impact the weights the network learned, and so to fight
over-fitting to anomalous datapoints I use both L2 regularization and gradient clipping, which helped
to avoid the exploding loss problem that these datapoints were creating.

The results for my main program are as follows:

Results
0.6
0.5
0.4
W ’
0.3 I\ ;
0.2
0.1
0
cC O 0o O O o oo ©o o
o - ('] (23] < wn o ~ o0 [} o i o~ m < wn () ~ o0 (<)) o - o~ o < wn o ~ o0
= - Ll Ll i Ll i - - - - o~ o~ o~ o~ o~ (o'} o~ o~ o~
e
Q
=
== Fraction of games won against last network Fraction of games won against baseline

Fraction of games won against random

Note that data before pretraining is not included in the graph, but that in my testing, a fully untrained
network beat the baseline model 15% of the time, and the random model 25-30% of the time. So,
even though the graph only shows a shallow upward trend, the starting point after pretraining is
significantly better than a fully untrained algorithm. Also note that, due to this being a 4 player game,
4 perfectly matched opponents would each win 25% of the time, so all values being below 50% is
expected. This means that the algorithm eventually became close to evenly matched with my baseline,
and significantly better than random, and as the blue line shows was consistently improving, as the
blue line rarely dips below 30%. Though I was hoping for my algorithm to get to human level play,
and this wasn’t achieved, these results imply the general approach is one the right track, and that
perhaps with just a few more tweaks it could achieve human level play.

6 Conclusion/Future Work

I think there are several possible avenues for future work on this algorithm. The first, which I think
might yield the most improvement, would be to incorporate an element of MCTS to action decisions,
as AlphaZero uses. This would allow the algorithm to test its possible actions before actually deciding
that the action with the highest expected return is the best one, which I think would significantly
improve its play, especially early on before it has seen sufficient examples for its Q estimations to
be very accurate. That would lead to more learning faster, which I think would speed up the overall
process, with the added bonus that those results might be even better than those reached here. Another
possible area of future work would be testing if learning on Hearts transfers to a similar game, like
Bridge, or whether Hearts is a unique enough game that there isn’t room for transfer learning.

7 Contributions

As I am working on this project by myself, all work described in this paper is my contribution.
Though this project shared some base game engine code with a project done for CS229, the Deep Q
Algorithm itself was used solely for this class. Special thanks to my TAs in CS230 and CS229 for
helping me with various parts of this project and the related project, and for pointing me towards the
resources I needed to figure out Deep Q Learning. The template for this document was taken from
NeurIPS 2020.

References

[1] Garry Kasparov. The chess master and the computer. The New York Review of Books, 57(2):16-19,
2010.

[2] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58-68,
March 1995.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550:354—, October 2017.

[4] Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, and Xia
Hu. Rlcard: A toolkit for reinforcement learning in card games, 2020.

[5] Surag Nair. Simple alpha(go) zero tutorial, 2017.
[6] Bernhard Pfann. Tackling uno card game with reinforcement learning, Jan 2021.

[7] Lak Lakshmanan. Debugging a machine learning model written in tensorflow and keras, Feb
2019.

[8] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions

