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Abstract

Fervent research has been accomplished in recent years to see if quantum com-
puting can help with enhancing the performance in machine learning. While the
current NISQ (noisy intermediate scale quantum) computers have limited access
to coherent qubits and quantum gates, there is growing consense of their potential
in reducing the parameter space and outperforming classical neural networks. In
this paper, we demonstrate a quantum ready dropout regularization on Tensorflow
Quantum using variational circuits. We also suggest alternative techniques similar
to dropout regularization that is suited for quantum machine learning.

1 Introduction

Quantum machine learning is known to provide atypical calculation patterns as well as relatively
strong performances with small parameters compared to their classical counterparts. In addition,
vanishing and exploding gradients do not apply to quantum machine learning [2] making the growing
field of applying quantum machine learning algorithms to classical data an intriguing field to conduct
regularization experiements. We consider the classical dropout method on VQC (varitaional quantum
circuits) on down-sampled classical data translated into quantum data and see if any regularization
can occur as proposed by Schuld et al.[8]. Our work requires implementing an overfitted model
by scratch considering the constraints of modern NISQ machines and realistic quantum simulation,
as the two main constraints in our development of a regularization techniqe. Our paper involves
developing a Quantum Tensorflow version of the work presented in Schuld et al. [8] with the addition
of a novel quantum dropout.

2 Related work

We closely follow the implementation of quantum classifiers described in Farhi et al. [4] and the
works of Schuld et al. [8]

CS230: Deep Learning, Spring 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3 Preprocessing Dataset

The MNIST handwritten digits were used for our implementations of the Farhi and Schuld quantum
classifiers. We focus our efforts on MNIST256, where it is transformed into real-valued data vectors
of dimension 256 given [5] that both [4] and [8] use it as a benchmark. Although both works use
the same dataset, their preprocessing vary greatly from one another due to distinctions in quantum
embeddings.

The Farhi et al. usage of basis embedding requires a severely downsampled 4 x 4 MNIST dataset with
the unconventional removal of any contradicting labels. After downsampling, a threshold is applied to
create the computational basis with N = 16 inputs each representing a pixel. The pixels with values
above the threshold are noted as "1" and "0" creating our computational basis state |0, 1, .ni..nN 〉.
This basis is encoded into the qubits with a rotation through an X gate for ni = 1 where the dataset is
a superposition of the computation basis states [9].

|Ψ〉 =
1√
N

N∑
i

|x(m)〉

We next describe the state preparation scheme done by Schuld et al. [8] Let the input vector be RN ,
where N represents the dimension of the vector. If N is a power of 2, all the amplitudes created by
the n-qubit system will be utilized, and so the input vector will be straightforwardly normalized to
unity. If N is not a power of 2, Schuld et al. pads the input vectors with non-zero padding terms,
ci until the padded vector is of dimension that is a power of 2. The padded vector with a total of L
padded terms will then be normalized to unity as follows: [8]

(x1, · · · , xN )T → 1√∑
i x

2
i +
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j |cj |2

(x1, · · · , xN , c1, · · · , cL)T

After normalization, Schuld et al. [8] implements the amplitude encoding; that is, the normalized
input vectors are associated with the amplitudes of the n-qubit state: [7]

|Ψ〉 =

N∑
i

xi |i〉

Here, |Ψ〉 is interpreted as the quantum state, and xi are the the elements within the N -dimensional
input vector.

This by itself is non-trivial, and requires the use of a specialized state-preparation cir-
cuit, which creates a quantum state where the amplitudes of the basis states (i.e. |i〉 ∈
{|00000001〉 , |00000010〉 , |00000011〉 ...} as an 8-qubit example) are given by the provided normal-
ized values (in our algorithm these are the pixel values of the downscaled/padded/deskewed input
images). We create this circuit by using the Mottonen algorithm [6].

Due to the requirements listed above, the simplest implementation will then be to choose the input
vector to have a dimension of power of two. Schuld et al. uses the MNIST dataset by first deskewing
them and coarse-graining the original (28,28) dimensional examples into (16,16) so that when
flattened, the images can be represented as a 256-dimensional input vector, which is essentially the
dimension of a 8-qubit system. [8] Thus, the input vector is straightforwardly normalized to unity.

4 Models

The models that we have considered are Farhi et al. [4] and Schuld et al. [8]. Both apply VQC
(variational quantum circuits) where the decomposition of the unitary operation Uθ is expressed as:

U = UL...Ul...U1

where each Ul is a single qubit or two qubit quantum gate. The quantum gates act as parameters
which are optimized and each "block" of quantum gates can be considered equivalent to a classical
linear layer. To focus on the dropout regularization we will discuss the architecture of both models
briefly below.
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4.1 QNN by Farhi et al

For the Farhi et al. approach several unitary matrices are applied to each channel of the quantum
circuit. Unitary matrices are generalized orthogonal matrices in the complex domain which is norm
preserving i.e. a unitary matrix U fulfills the condition of U†U = UU† = I where U† is the
conjugate transpose[1]. The unitary consists of several parity gates, which apply the tensor product
of the specified gates. G1 ⊗G1 where G1 is an arbitray unitary single qubit gate. Our model which
follows the Tensorflow tutorial closely uses the XX and ZZ parity gate which are parameter dependent
and allow for learning. With the given loss function:

loss(~θz) = 1− l(z) 〈z, 1|U†(~θ)Yn+1U~θ |z, 1〉

where Yn+1 is the readout qubit , 〈z, 1| is the complex conjugate encoded computational basis |z, 1〉,
l(z) is the true label [−1, 1]. The expected readout is between [−1, 1] and therefore an improvement
of parameters would result in a reduction in the loss function. The QNN by Farhi is much friendlier
in terms of its pre-processing given that each qubit represents a pixel and is the slimmest using the
least amount of paramters1.

4.2 CC (Circuit Centric Quantum Classifier) by Schuld et al.

The Schuld implementation utilizes a four step model architecture which consists of pre-processing,
learning, measuring, and post processing steps. We focus our attention to the unitary transformation
applied in Step 2 and the measurement in Step 3. Step 2 is the equivalent of several classical linear
layers when decomposed into gates and effectively is a difference in gate choice compared to Farhi et
al[4]. The architecture involves several "blocks",denoted as r, where r represents a hyperparameter
for the cyclic control gate creation. It is best to consider each block as equivalent to a "layer" in
classical machine learning. To create a block single qubit gates are applied to all channels where for
our implementation we specifically choose 3 Rotation gates around the X,Y,Z gates which allows for
the greatest parameterization around each of the axes of the Bloch sphere. The single qubit gates are
followed by two qubit control gates where for any qubit index j ∈ [0,#ofchannels] the block must
have one controlled single-qubit gate with the jth qubit as the target and the qubit with the index
k = (j + r)(#ofchannels)[8].

Much of the Schuld et al. quantum classifier was developed upon our best interpretation and the
closest quantum Tensorflow equivalent. Current implementations of quantum networks are very much
theoretical.

The algorithm given in Schuld et al. required the use of 2 types of gates - generic one-qubit gates with
3 parameters (i.e. representing any possible gate) and controlled by similarly generic two-qubit gates.
As per "B. Optimising the architecture" of the Schuld paper, the two-qubit gates can be reduced to a
parameterized phase shift and a parameterized X-rotation gate, which are easily enough implemented
in tfq/cirq (the cirq equivalent of the controlled phase-shift gate is the controlled-Z gate). As for the
generic one-qubit gate, while tfq doesn’t support specifying a gate via a parametric Pauli matrix,
we were able to use the fact that any gate can be decomposed into 3 parametric rotations, around Z,
then Y, and another around Z, as per Slepoy [10]; thus, we still use the same number of learnable
parameters in our circuit as Schuld et al.

4.3 Overfitting

For Quantum Circuits we are limited in the number of implementable qubits and quantum gates due
to current NISQ computational and runtime costs. Therefore, increasing the number of parameters to
make the the model excessively flexible to exhibit overfitting proved difficult. For MNIST, we have
generated irregularities in the data by filtering the true and false classes (the numbers 3 and 6 that we
attempt to differentiate, inspired by Farhi et al.[4]) and then limiting the allocation of each class to
30% for "3" (and 70% for "6") in the 500-element training data and, conversely, 70% for "3" (and
30% for "6") in the 500-element testing data (all data is entries randomly picked from the MNIST
database). This generates noticeable overfitting on the baseline Schuld algorithm, making the test set
fit approx. 1% better on average across 10 runs.
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5 Dropout Method

In our research we have discovered that because of the many approaches in embedding classical
data into quantum data that regularization techniques such as dropout are difficult to generalize and
implement.

To motivate the dropout algorithm described in Schuld et al. [8], we need to understand the correlation
between the QNN/quantum classifier and a classic feed-forward neural network. Since quantum
circuits are essentially all representable as linear operations in the Hilbert space, it is easy to see that
in the classical ANN model they correspond to a linear layer (e.g. weight matrix and bias vector),
while the measurement operator can be seen as corresponding to the nonlinear activation. Essentially,
a quantum classifier circuit like ones built by Schuld et al. [8] or Farhi et al. [4] is similar to a
feed-forward neural network with one hidden layer.

To further investigate this similarity, it is useful to think back to the amplitude encoding in the input
used by Schuld et al. With that example, it’s easy to see that a neuron of a classic ANN will, in this
model, essentially correspond to the amplitudes of the basis states at a given point ("moment") of the
circuit. Therefore, mirroring dropout from classic neural networks, a quantum dropout mechanism
might focus on eliminating some of these amplitudes from the final part of the circuit, e.g. from the
first and only hidden layer. Schuld achieves this by measuring a randomly chosen qubit (different
from the output qubit) over several epochs. By the properties of quantum physics, measuring a qubit
can collapse its state to either |0〉 or |1〉; thus, the amplitudes of all basis states of the full circuit
involving the other value become 0, and measuring them would be impossible. It’s easy to see that
this is equivalent to applying dropout with keep-probability of 50% in a classic neural network.

Interestingly, we found that this is not possible to directly implement in Tensorflow-Quantum. The
main issue is the fact that building an expectation value of the output qubit, which is the overall output
of the quantum circuit and used to calculate the prediction, requires (in a "noisy" device or simulation)
several measurements of the output qubit. The problem is that, if we measure the dropout qubit
at the end of the circuit as well, we might get different amplitudes dropped out (depending on the
dropout measurement being |0〉 or |1〉), so the different values measured for the output qubit would
effectively be drawn from different circuit states; we would want to build two expectation values of
the output qubit then, one corresponding to the dropout qubit measuring |0〉 and one corresponding to
the dropout qubit measuring |1〉. However, that would require modifications to Tensorflow Quantum’s
noisy simulation backend which would be too complex for the current work.

Instead, we settled on using pure analytical simulation, having TFQ measure the expectation of both
the output and dropout qubit; then, instead of feeding the measured expectation value to further
layers of the hybrid quantum-classic architecture directly, we add a dense classic ANN 2x1 layer with
learnable parameters (which also invokes the learnable bias term mentioned by Schuld) which takes
the measured expectations of the output and the randomly chosen dropout qubit as inputs. Intuitively,
this can be seen as the dense layer learning to match the analytic expectation calculations to the
example output expectation measurement logic described above. This works surprisingly well on our
small dataset, minimizing the generalization error without noticeably decreasing classification error
for the training dataset.

6 Results

Results for MNIST Prediction using QNN, Circuit Centric
Model Type Validation Test Parameters
QNN by Farhi 85.75 % 89.92% 32
C.C. by Schuld 97.44 % 96.85% 124
C.C. w dropout 99.2% 98% 124
Fair Classical 91.31% 91.31% 32
Classical CNN 99.95% 99.95% 1198721

Table 1: Higher resolution input and a more powerful model make this problem easy for the CNN.
While a classical model of similar power ( 32 parameters) trains to a similar accuracy in a fraction of
the time [4]
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Figure 1: Accuracy and loss plot of C.C. without dropout Our validation (blue) and training
accuracy and loss (orange) for the Schuld implementation suggests high performance.

Figure 2: Accuracy and loss plot of C.C. with dropout Our validation (blue) and training accuracy
and loss (orange) for the Schuld implementation suggests high performance representative of Schuld’s
implementation.

After developing an amplitude encoding according to the proposed strategy by Mottonen et al. [6]
we were able to achieve sound results in both our dropout and non dropout Schuld implementation.
While the implementation with dropout was able to train slightly better than the original model, we
consider this to not be statistically significant and also did not see any regularization effect thus
requiring further research.

7 Conclusion and Outlook

We have developed the Circuit Centric Quantum Classifier by Schuld and a quantum dropout
regularization technique on Quantum Tensorflow, both firsts to the authors knowledge. Encouragingly
the model performs comparatively with the paper with only a small subset of the MNIST dataset and
shows to be resilient against any strategized dropout techniques. Given the current landscape of QML
we see that there is much potential in creating structure and conducting research to appreciate the
effects of our fully generalized quantum dropout regularization. Therefore, in the near future we
intend to develop and outline a more generalized dropout technique for the Tensorflow Quantum API
and to apply it to several other benchmark datasets. We also intend to investigate other regularization
methods and QML architecture given our challenges in applying dropout to the basis embedding
architecture by Farhi et al [4]. One possible step for the future work is to incorporate operational
quantum dropout scheme proposed by by Verdon et.al. [11] as well as to investigate Quantum
Convolutional Networks [3].

8 Contributions

Maxim worked on the drop out implementation for both Schuld et. al. and Farhi et. al. Ricky and
Hiroki worked on the Schuld et. al. implementation including the pre-processing of the datasets.
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Figure 3: Simplified sample 3-layer circuit with ancillary-qubit Schuld-like quantum dropout applied.
You can see the ancillary qubits, marked with negative indices, being included in each layer to replace
dropped qubits.

Figure 4: We see that without dropout that our performance is around 89% and that our epochs take
around 15minutes (950 seconds).

Figure 5: Fragment of Schuld circuit on 8 qubits implemented in Cirq.
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