
Chess Agent Prediction using Neural Networks

John Dalloul
Stanford University

jdalloul@stanford.edu

Mark Bechthold
Stanford University

markpb2@stanford.edu

Abstract

This project aimed to use neural networks to predict the agents of a chess game,
i.e. whether the player with white pieces is a human or computer and whether
the player with black pieces is a human or computer. Several different neural
network architectures were assessed, including naive logistic regression, dense
networks with varying numbers of hidden layers, and convolutional networks with
3D convolutions. The most successful architecture was comprised of two 3D
convolutions prior to six fully-connected hidden layers and a four neuron output
layer, using ReLU activations following each layer; this architecture achieved
an accuracy of 79.3% on the test set (4,004 games; 1,001 from each class of
human/computer as white and human/computer as black), significantly higher than
the majority classifier accuracy of ∼25%. Further experimentation with hyper-
parameter tuning for this architecture and more training data are promising avenues
to increase performance on this classification task.

1 Introduction

Humans have played chess for centuries and the dominant styles of chess have evolved over the years
just as the theory of the opening, middle game, and end game has changed. In recent years, chess
engines have been developed that consistently outperform the best human players in the world, and
other engines have been developed to play against average human players on online applications.
Recently, with the release of the Netflix show The Queen’s Gambit and most people staying home
during this past summer, the popularity of chess has increased dramatically, and as more and more
people play chess online, the use of chess engines has become more prevalent.

This project aims to use neural networks to determine whether the players in a game of chess are
human or AI based on their moves throughout the game to see if human and AI styles of play are
distinguishable. This could reveal important aspects of chess that are not immediately obvious based
on existing theory. In addition, it could be possible to flag certain players in online games to be
investigated for cheating if their moves tend be more AI than human. Specifically, to achieve our
aims, the input to our algorithm is a set of consecutive positions form a chess game. We then use our
neural network to output a predicted classification of the two players as either human or AI.

2 Related work

There are many AI-related projects in chess from the creation of chess engines to play against
humans[1] to the analysis of existing games using neural networks[2]. Existing AI projects in chess
have dealt with computers attempting to predict human moves[3]; some engines have also been
built on neural networks that learned various patterns to predict moves[4]. In the game of Go, there

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



exists a statistical analysis to identify human vs AI players[5]. Some research has discussed the
challenges associated with identifying cheating in chess games[6]. However, there does not seem to
be an existing AI vs. human neural network classifier for chess. We will try to leverage existing data
sets of chess games and will look at existing chess engine neural networks to inform our classifier
architecture.

3 Dataset and Features

The initial input dataset[7] was comprised of 8,141 games of chess broken up into 3 categories: human
vs human (∼ 3,400 games), human vs AI (∼ 1100 games), and AI vs AI (∼ 3,600 games) with all
human players having elo ratings between 1800 and 1999 since these players represent a subset of
very strong players that are not at a grandmaster or international master level. In the original dataset
each game had headers providing contextual information such as elo rating, whether or not white or
black was an AI, date and time, etc. After this header, there were the sequence of moves in standard
chess notation as shown in (Figure 1). Using the python-chess library we cleaned the data, filtering
out games that had fewer than 40 total moves (number of moves by white + number of moves by
black) as games with fewer moves seemed more challenging to classify since the search space at
the beginning of a chess game is much smaller; because of this, AI and human play is less likely to
diverge. We then constructed sparse arrays of dimension (8× 8× 6) for each board configuration
in a given game where the 8× 8 dimensions represented the chess board dimensions and the depth
of 6 represented the 6 types of chess pieces where layer 0 represented pawns, layer 1 represented
rooks, layer 2 represented knights, layer 3 represented bishops, layer 4 represented queens, and layer
5 represented the king. We used a 1 to indicate that a white piece was present on a given square, a 0
if no piece was present, and a -1 if a black piece was present (Figure 2). For example, a ‘1’ at index
(5, 5, 3) would represent a white bishop at position (f3) on a chess board. A single game was then
represented by an (8× 8× 6× 40) matrix where there are 40 total moves in a game. Each game was
labeled with either 00, 01, 10, or 11 - 00 for human v human, 01 for human v AI, 10 for AI v human,
and 11 for AI v AI where the first position shows the nature of the player with the white pieces and
the second position shows the nature of the player with the black pieces. For training our neural
network, we split the dataset into a training set comprised of 80% of the inputs from each of the game
categories. Our validation set is comprised of the remaining 20% of games from each of the human
vs human, AI vs human, and AI vs AI categories. For early iterations we started with a validation set
and training set. After confirming that our network was working correctly, we expanded the dataset
to consist of 8,000 examples from each class in the training set, 999 examples from each class in the
validation set and 1001 (due to an off by 1 error) from each class for the test set.

Figure 1: An image of an example game from the initial uncleaned dataset.

2



Figure 2: An image of the starting board configuration looking at the pawn slice of the (8× 8× 6)
matrix representing a board state.

4 Methods

We used Pytorch to implement a basic neural network to run on our dataset. Our inputs were the
games, and our output were the class labels. We elected to start with a set of fully connected
hidden layers rather than performing a 3D convolution. Despite the fact that this problem and our
input data structure seemed to lend itself nicely to convolution we wanted to establish a baseline
with a more rudimentary network for comparison first. To implement the fully connected layers,
we permuted our original matrices from the dataset into matrices of dimension (6 × 40 × 8 × 8)
which we then flattened, creating 15,360 features, and used the cross-entropy loss function with
L2 regularization. Thus our training data was of the form (m × 6 × 40 × 8 × 8) where m was
the number of training examples. We used ReLU activation functions between hidden layers and
included biases for each neuron, performing a Softmax of the final layer to classify the inputs. We
used Adam as our optimization algorithm, keeping the default beta parameters. Then, we tried a
variety of hyper-parameters to determine the optimal number of hidden layers and the number of
neurons in these hidden layers. Flattening the input matrices seemed like the best approach for
implementing a fully connected network since a traditional fully connected network, where the
features were board position-move pairs, would likely be far too sparse to learn anything meaningful
given the size of our initial dataset.

Given the locality of pieces in certain regions of a chess board, the natural matrix configu-
ration to represent chess boards, and the sequence nature of consecutive chess moves, we felt that a
convolutional neural network could potentially offer a richer understanding of this problem. To this
end, after implementing a fully connected version of the network, we then created a convolutional
network, using Pytorch’s convolutional functionality. We used a series of 3D filters fully connected in
the number of channels where the first dimension of the filter corresponded to the number of moves
assessed at a given time, the second dimension corresponded to the size of the height of the board
being assessed with the filter, and the third dimension corresponded to the size of the width of the
board being assessed with the filter. For the filter sizes we used two filters of size (5 × 3 × 3) to
assess (3× 3) regions of the board five moves at a time, as we felt that sequences of several moves
would be more illuminating in classifying humans vs AI. The region of (3× 3) was selected since
many of the interactions between chess pieces can be isolated to (3 × 3) regions. For example,
pawns and knights can only affect pieces within a (3× 3) region. We also implemented a stride of
dimension (2 × 1 × 1) so as to not have too much overlap between 5 move sequences while still
capturing most of the relevant information of groupings of moves. For each convolutional layer, we
increased the numbers of filters, starting with the initial 6 input channels and increasing to 64 and
then 128 filters so that we could learn more complex features.

5 Experiments/Results/Discussion

The following metrics are given for algorithms run on the larger dataset (8k training, 1k validation,
and 1k testing data for each of the 4 classes); from this dataset, the majority classifier accuracy would
be expected to be 25%. For a baseline metric, we implemented a basic logistic regression algorithm,
flattening each input (initially of dimension (m × 6 × 40 × 8 × 8)) and having 4 neurons in an
output layer with no hidden layers, using the built-in Softmax activation in the Cross Entropy Loss
function. Using log-scaled random hyper-parameter search across the learning rate and weight decay
parameters for the Adam optimizer (learning rate: 10−3 to 10−5, weight decay: 10−3 to 10−6), the
highest logistic regression validation accuracy was found to be 73.6% (Figure 3) with learning rate

3



of 8.9 ∗ 10−4 and weight decay of 6.4 ∗ 10−4. A mini-batch size of 64 examples was used for the
logistic regression experiment and all other experiments described in this section.

Figure 3: Validation accuracy for logistic regression across 20 epochs.

Next, we assessed multiple depths of fully-connected neural networks; we chose dense neural
networks with one hidden layer (referred to as Dense1), three hidden layers (referred to as Dense3),
and six hidden layers (referred to as Dense6). Dense1’s hidden layer contained 512 neurons, Dense3’s
hidden layers contained 512, 512, and 64 neurons, in order, and Dense6’s hidden layers contained
2048, 2048, 512, 512, 128, and 128 neurons, in order. Each dense neural network used a ReLU
activation for the hidden layers and had an output layer of 4 neurons (with Softmax activation via
the Cross Entropy Loss function). Although log-scale random hyper-parameter search was done for
Dense1, the search was unable to be completed for the remainder of the experiments due to time
constraints. Instead, the remaining experiments utilize a learning rate of 5 ∗ 10−4 and a weight decay
of 1 ∗ 10−4, which were determined to be the best values by a systematic search at the beginning
of the project. All three dense networks performed similarly, with Dense1, Dense3, and Dense6
achieving peak validation set accuracies of 76.8%, 76.8%, and 76.9%, respectively (Figure 4).

Figure 4: Validation accuracy for fully connected networks across 20 epochs. The green curve
corresponds to Dense1; the blue curve corresponds to Dense3; and the pink curve corresponds to

4



Dense6.

To try to capture the regionality of chess moves and sequences of moves, experiments were conducted
in adding convolutional layers prior to the hidden layers of Dense1, Dense3, and Dense6; these
will be referred to as Conv1, Conv3, and Conv6, respectively. Two 3D convolutional layers were
added: the first layer took as input the initial (m × 6 × 40 × 8 × 8) dimensional data matrix and
used 64 filters, each of size (5 × 3 × 3) and with stride (2 × 1 × 1), producing an output volume
of dimensionality (m × 64 × 18 × 6 × 6). The second 3D convolutional layer used 128 filters,
each of size (3× 3× 3) and with stride (2× 1× 1), producing an output volume of dimensionality
(m× 128× 8× 4× 4). This volume was flattened and then input into a fully-connected component
of the appropriate depth. The addition of the 3D convolutional layers achieved slightly increased,
nearly identical model performance, with Conv1, Conv3, and Conv6 achieving peak validation set
accuracies of 77.5%, 77.8%, and 78.4%, respectively (Figure 5).

Figure 5: Validation accuracy for the convolutional networks across 20 epochs. The green curve
corresponds to Conv1; the gray curve corresponds to Conv3; and the orange curve corresponds to
Conv6.

Since the Conv6 architecture achieved the highest validation set accuracy during experimentation,
it was chosen to be further investigated. Adding dropout layers following the activations of each
fully-connected hidden layer (with keep probability of 0.8) did decrease variance between training
and validation set accuracy, but significantly decreased the absolute value of both the training set
accuracy and validation set accuracy after 20 epochs of training. Thus, Conv6 without dropout
was assessed on the test set of 4,004 chess games (1,001 for each class). The Conv6 architecture
achieved an overall accuracy of 79.3% on the test dataset, a pleasantly surprising increase over its
peak validation set accuracy of 78.4%. The normalized confusion matrix of the classification by the
Conv6 architecture is included below (Figure 6).

Figure 6: Confusion matrix where H stands for human and C stands for computer; the first letter
represents the player with white pieces, i.e. HC indicates a game where the player with white pieces
was a human and the player with black pieces was a computer. The classification accuracy is 77.9%

5



for HH, 77.3% for HC, 79.6% for CH, and 82.5% for CC.

Based on these results there seems to be promise in our convolutional neural network approach,
given the substantial improvements on the majority classifier as well as the improvements from
logistic regression to fully connected and from fully connected to convolutional. However, these
improvements are relatively small and different architectures and hyper-parameters could be assessed
to potentially increase these gains. Furthermore, our network exhibited significant variance between
training set accuracy and validation set accuracy; for all of the experiments apart from the logistic
regression, our networks achieved nearly 100% training accuracy while achieving <80% validation
accuracy. Despite attempting various regularization techniques such as increasing L2 regularization,
implementing dropout, and increasing the amount of training data, the variance did not decrease sig-
nificantly. Although increasing data improved our validation accuracy somewhat across experiments,
the variance remained relatively high. Increasing L2 regularization via the weight decay parameter of
the Adam optimizer had little to no impact on variance, and even decreased validation set accuracy in
some experiments with values >10−4.

6 Conclusion/Future Work

All algorithms and model architectures assessed performed significantly better than the majority
classifier accuracy (∼70 - 80% for the experiments versus ∼25% for majority classifier accuracy
for the balanced, larger dataset). Adding hidden layers provided a ∼4.4% increase in performance
over naive logistic regression (∼76.8% with hidden layers versus 73.6% without hidden layers);
adding convolutional layers prior to fully-connected layers provided a ∼1.4% increase in performace
(∼77.9% with convolutional layers versus ∼76.8% without convolutional layers). The highest
performing architecture included two 3D convolutional layers prior to 6 fully-connected hidden layers,
ending with a 4-neuron output layer (see above for details of convolutional and fully-connected
layers), achieving a peak validation set accuracy of 78.4% and a test set accuracy of 79.3%.

With more time and computing resources, there are several hyper-parameters that we would further
optimize; these include further tuning of the learning rate and weight decay, the number of neurons
in the various hidden layers, the size, stride, and number of channels for the convolutional layers,
and the number of convolutional and fully-connected layers. Furthermore, with more computational
power more training data can be used to tune model weights. We were able to collect a dataset of
millions of games across all classes, but due to limited computational power and the need for quick
iteration we were only able to use a small fraction of this data. Using a greater portion of the dataset
could boost classifier accuracy and decrease variance between training and validation set accuracies.

7 Contributions

John focused a large portion of his work on tuning hyperparameters and working with tensor board
to analyze results while Mark worked more closely with processing the data for the network and
working on some of theory based on the challenges we confronted with our results. We implemented
the actual network together, working through a Pytorch tutorial on creating a neural network.

References

[1] Silver, David, et al. “A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go
through Self-Play.” Science, vol. 362, no. 6419, 2018, pp. 1140–1144., doi:10.1126/science.aar6404.

[2] Sabatelli, Matthia, et al. “Learning to Evaluate Chess Positions with Deep Neural Networks and Limited
Lookahead.” Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods,
2018, doi:10.5220/0006535502760283.

[3] McIlroy-Young, Reid, et al. “Aligning Superhuman AI with Human Behavior.” Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020,
doi:10.1145/3394486.3403219.

[4] Oshri, Barak. “Predicting Moves in Chess using Convolutional Neural Networks.” (2015).

6



[5] Zyga, Lisa. “Distinguishing between Humans and Computers in the Game of Go.” Phys.org, Phys.org, 6
Nov. 2017, phys.org/news/2017-11-distinguishing-humans-game.html.

[6] Barnes, David J., and Julio Hernandez-Castro. “On the Limits of Engine Analysis for Cheating Detection in
Chess.” Computers & Security, vol. 48, 2015, pp. 58–73., doi:10.1016/j.cose.2014.10.002.

[7] Ludens@freechess.org. “FICS Games Database.” Search, www.ficsgames.org/.

[8] Matteson, Andrew. “Analyzing Chess Positions with Python.” Medium, Analytics Vidhya, 8 Feb. 2021,
medium.com/analytics-vidhya/analyzing-chess-positions-with-python-26d73b7c892.

7


	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Conclusion/Future Work 
	Contributions

