Authorship Identification with Embeddings and
Sentence Variations

Enok Choe Jasper McAvity
Department of Computer Science Department of Computer Science
Stanford University Stanford University
echoe720@stanford.edu jmcavity@stanford.edu
Abstract

In this paper, we aimed to solve the problem of predicting the author of a given
piece of text. We created datasets mapping different-sized chunks of text to authors,
and used them to train several models. These models include a basic ANN that takes
in word count vectors, several RNN architectures that take in GloVe embeddings,
and a sentence encoder that maps text into a latent space. All models produced
impressive results on a variety of datasets, with the ANN performing the best. We
conclude by analyzing potential reasons for this surprising result.

1 Introduction

Every author has a unique writing style; their word choice, the way they formulate their sentences,
and even overall structure are some of the tangible factors that help distinguish one author’s writing
from another. With this in mind, we were curious if it would be possible to train a deep learning
algorithm that could train on works by different authors and be used to identify the author of a new
piece of text. This task is also known as authorship identification.

Authorship identification can be used to solve many interesting problems. For instance, one applica-
tion of authorship identification could be to confirm that content found online was actually written by
the listed author. It could also be helpful in contexts like detecting plagiarism or fake news. This
project used several models, such as ANN and RNN architectures, as well as a sentence embedding
model, to accomplish this task.

2 Related work

Most existing authorship identification efforts are primarily based on deep neural networks and
applications of word embeddings. Most recently, latent Dirichlet allocation, decision trees, and
varying neural networks were applied. CNN models applied to this task had about 0.52 average
accuracy [1]. In an another work, support vector machine (SVM) classifiers were used, but were only
effective for longer documents [2]. Since we wanted to parse datasets into smaller sentence mappings,
we decided to avoid SVMs. Another method is unmasking, which repeats the process of determining
ten-fold cross-validation experiment results, then eliminating the k most strongly weighted positive
and negative features, with SVM with linear kernel [3]. However, for the same reasons as [2], we
decided against building upon this model. Other algorithms include Random Forest Classifier, Extra
Tree Classifier, Decision Tree Classifier, AdaBoost Classifier, and Gradient Boosting Classifier, all
with GloVe embeddings. However, most performed far worse than RNNs in f1 score, and RNNs
have more scholarly references [4]. Given this data, we decided to focus on RNNs. A prior use case

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

of C50 training uses RNN classifiers with GRU, LSTM, and BiLSTM models for single sentence
and article levels with much higher accuracy for article level [S5]. However, we found that there are
significant holes in this case such as overfitting, inconsistent distribution of training data to test data
and sentence parsing. Our BiILSTM model addresses these issues by building upon this model.

3 Dataset and Features

We used two datasets. The first was taken from a corpus of books from the website Project Gutenberg
[6]. The second was taken from a corpus of news articles (Reuters_50_50) from UCI Machine
Learning Repository, and called C50 [7]. C50 contains texts written by 50 different authors, which,
when parsed into individual sentences, contained 43382 training examples in our training set and
a similar number in our test set. Because this number was so large that it required too much
computational power for our setup, we decided on a 50/50 split between training and test sets. For
Gutenberg, we created a dataset using texts from the 50 most common authors in the dataset. This
meant that both datasets had the same number of authors. One thing that was unclear was what size
our training examples should be. Therefore, instead of picking one size, we created multiple datasets
with different sized training examples. Each new dataset had training examples with a constant
number of sentences, where we mapped authors to n-sentence sized chunks of text, where n could be
1,5,7, 10, or 100. We also created a dataset that mapped full C50 articles to author. For the rest of
this paper, we will refer to individual datasets by their name, followed by their example size. For
example, G-5 would refer to the Gutenberg dataset with 5-sentence training examples, while C50-5
would be the same but with the C50 dataset. Because C50 articles were only about 20-30 sentences
on average, we did not have a C50-100 dataset. We also did not have a G-1 or G-7 dataset because
the Gutenberg corpus was very large, and the amount of time needed to parse these datasets was
deemed too high.

4 Methods

The first two methods we used were classifiers that, given a word vector for a piece of text, classified
it as one of 50 authors. We used both the C50 and Gutenberg datasets for these methods. Our last
method fine-tuned a pre-trained sentence transformer to create embeddings for each training example
and used these embeddings to predict authorship. For this method, we only used C50-5. As a baseline,
we used a standard artificial neural network with one 100-unit hidden layer that took in average
sentence length and average word length. The baseline achieved 14% accuracy on the G-100 training
examples, which was significantly better than random chance (2%), but was clearly not practically
useful. We will now go into further detail about our other methods.

4.1 Artificial Neural Network with Word Counts

Our first method used the same architecture as our baseline. Our model had one 100-unit hidden
layer, using a ReLU activation function. Experiments with more layers gave the model a tendency to
over-fit, and best results were found with this architecture. The output layer was a 50-unit softmax,
which allowed the model to classify each training example to a particular author. We used the Adam
optimizer (with 0.001 learning rate) and binary cross-entropy loss for training. We found most success
training for 5 epochs with a batch size of 32.

The inputs to the network were word count vectors created by the scikit-learn CountVectorizer
function, which encodes the number of times each word appears in a particular training example.
This meant that the word vectors captured surface-level information, and didn’t look at co-occurrence
between words or other features.

4.2 RNN Architectures with GloVe

Because our ANN model was quite basic, we wanted to try solving the problem using more compli-
cated RNN architectures that could better capture the meaning of text. We tried LSTM, GRU and
BiLSTM models with GloVe embeddings as inputs, with more attention on the BiLSTM model after
seeing consistent patterns of BiLSTM outperforming the other two. A pre-existing model [11] was
fine-tuned to meet our dataset formats.

Each of the input texts were converted into GloVe-vectorized matrices. The GloVe model was trained
on a global word-word co-occurrence matrix, which tabulates how frequently words co-occur with
one another in the provided dataset. The training data was then trained through a classifier with
varying number of LSTM, GRU, BiLSTM layers (e.g. 1, 2, 3) with varying batch sizes (e.g. 64,
128, 256), with hidden layer sizes (e.g. 200, 300, 400), embedding length of 100, and with Adam
optimizer. BILSTM is a sequence processing model that consists of two LSTMs: one taking the input
in a forward direction, and the other in a backwards direction. Relatively, BILSTM has more context
available to the algorithm, which in this case would be knowing what precedes and follows a given
word. We used Cross-entropy Loss function, and the algorithm was run for 20 epochs.

C50 10 sentences f1 score- LSTM, GRU, BiLSTM

1
Epochs

~—
- - - - - -

Figure 1: C50-10 f1 score- BILSTM (Blue) out- Figure 2: BILSTM architecture
performs the others throughout all of the epochs,
which was consistent with our results in most trials.

4.3 Latent Space Encoder with Triplet Loss

One problem with the previous methods was that, as classifiers, they relied on having a fixed number
of authors. If a piece of text was not written by an author in the dataset, they would be unable to
predict this. Therefore, we trained another algorithm that could handle outside authors. Our model
learned a low-dimensional embedding space that could encode text and then find the nearest author
in that space (using cosine similarity). This method allowed us to pick a similarity threshold, where
if the nearest author was below that threshold, we would classify the example is written by an outside
author. We only used the C50 dataset for this task, because it was more well-structured and easier to
work with. This method is very similar to one used by many facial recognition algorithms.

We started off with a pre-trained encoding model and then fine-tuned it. The architecture of the model
has two parts: word embedding and pooling. The pre-trained model we started with used a BERT
model to generate a word embedding for each word in the example, and then used mean-pooling to
combine the embeddings into a 768-dimensional output vector. BERT is a bidirectional language
model trained on a large corpus of unlabeled text, and is designed to be fine-tuned.

To fine-tune this pre-tained model to fit our task, we used triplet loss to help update the parameters.
Calculating triplet loss uses the following formula:

N

Loss = 3 [= 2113 = 177 = £ 13+ |

i=1

For a given training example (called the anchor), calculating the loss requires two other pieces of
training data, one with the same label as the anchor (positive) and one with a different label (negative).
Triplet loss minimizes the distance between the anchor and positive examples and maximize the
distance between the anchor and negative examples.

After fine tuning the pre-trained model by fitting it using triplet loss, we were able to find an
embedding for each author by averaging the embeddings of each of their corresponding training
examples. We used this set of author embeddings to solve the classification task from the earlier
methods. Additionally, we were able to simulate training examples not written by authors in the
dataset by treating 40% of the test set as if it were written by outside authors. We were then able to
determine a similarity threshold at which the model was best able to predict authorship.

5 Results

5.1 ANN and BiLSTM Results

Performance for the classifier models can be seen in the following table, as well as in figure 4.

.0
l-sentence S-sentence 7-sentence 10-sentence article 100-sentence

]

)))) Figure 4: Visual representation of results for ANN
féf)éure 3: Confusion matrix from BiLSTM (C50-and BiLSTM on different-sized training examples.

The two immediate takeaways from Figure 4 are that the ANN with CountVectorizer had higher
accuracy than the BiLSTM, and that Gutenberg datasets had higher accuracy than C50 datasets. We
will discuss reasons for this in the conclusion. As far as difference between datasets, C50 is composed
of news articles, full of quotations that give little information about the author. Gutenberg, in contrast,
is made up of stories, and contains many characters, place names, and dialects that may carry a lot of
weight in training and make decoding easier. This provides an explanation for the ANN’s success for
the G-10 and G-100 datasets. In this case, the model has likely overfitted to the dataset. Because of
the way the dataset was split into training and test sets, it is almost guaranteed that parts of a given
book will be in both sets. Therefore, in a large training example, it is very likely that rare keywords
like character names appear, allowing the model to predict authorship and bypass any learning of
style all together. For example, if a thousand word piece of text has the words "Oliver Twist" in it,
you can be quite certain that the author is Charles Dickens, independent of the other 998 words.

Our primary accuracy metric was fl score. As our table indicates, the accuracy of our models tended
to increase with training example size, likely because of the increased amount of information in larger
training examples. The outlier is G-100 on the BiLSTM. We do not have a great explanation for
this, but one possiblity is that with such large pieces of text, it was difficult for the model to extract
coherent semantic information. For the BILSTM model, we tuned several hyperparameters, such
as epochs, learning rate, hidden layers, and number of BiLSTM cells. Because we noticed training
accuracy increasing until the end of the training process, we tried adding more epochs. However,
we observed that this only led to overfitting, and testing accuracy was unaffected. Changing the
number of hidden layers similarly had little effect. One explanation for this is that the problem was
not complicated enough to be improved by a deeper network. Increasing the batch size, however, led
to better results. For C50-7, for instance, changing batch size from 64 to 128 increased the f1 score
from 0.515 to 0.535, a significant increase. On the other hand, decreasing batch size decreased the f1
score to 0.50. This is likely because BiLSTMs’ learning is dependent on contexts, and more batch
sizes means potentially having more contextual clues pertaining to the author.

5.2 Sentence Encoder Results

In solving the classification problem on the C50-5 dataset, the embedding model achieved an accuracy
of 0.606, slightly surpassing the performance of both previous models. When we added text not
written by authors in the embedding space, we tested the accuracy of the models using thresholds
ranging from 0.5 to 1.0, where a cosine similarity between the nearest embedding and a training

Model Dataset 1 Sentence | 5 Sentence | 7 Sentence | 10 Sentence | Whole text | 100 Sentence
ANN C50 0.425 0.597 0.621 0.644 0.695 N/A
ANN Gutenberg N/A 0.734 N/A 0.962 N/A 0.982

BILSTM C50 0.433 0.529 0.534 0.543 0.550 N/A
BiLSTM | Gutenberg N/A 0.600 N/A 0.823 N/A 0.686
10 1 Scores of ANN and BiLSTM on Both Datasets -~ Random Chance
” 06 8 M

example of less than the threshold would be classified as written by an outside author. We found that
the best threshold was 0.86, which gave an accuracy of 0.548 on this more difficult task. We trained
the model using BatchAllTripletLoss for two epochs, with a batch size of 16.

2D representation of embeddings for a selection of authors.
Model Accuracy for Different Thresholds P 9

0ss
40

20

AaronPressman
BernardHickey
FumikoFujisaki
JanLopatka
KariPenhaul
KirstinRidley
MarkBendeich
Mure Dickie
RobinSids!
TnEelyn

o
&
.!

[N NN N NN]

| -~ 2

—20 .

-

05 06 07 08 03 10
Threshold —a0 —20 0 20 40

Figure 5: Graph of accuracy from sentence embedFigure 6: Representations of embeddings for a
ding model for different similarity thresholds. selection of 9 authors projected onto a 2D space.

Figure 6 plots 2D representations of the embeddings of a selection of 9 authors from C50. It is clear
that some authors, like Fujisaki and Penhaul, have embeddings that are tightly clustered and separated
from the others. Other authors, like Lopatka, Dickie, and Eelyn, in contrast, have embeddings that
are widespread and overlap in this 2D space (though overlap in 2 dimensions by no means implies
overlap in 768). When looking at accuracies for individual authors, these factors clearly make a
difference. Fujisaki and Penhaul had accuracies of 0.97 and 0.95 respectively, compared to Lopatka,
Dickie, and Eelyn with 0.27, 0.35, and 0.19. The extent to which embeddings for an author are
clustered is an indication of how easy it was for the model to learn their style of writing, or, in other
words, how distinctive their writing is. Another possibility is that these authors wrote about unusual
subjects, and the model was able to pick this up. This visualization makes it clear why there is such
variation in the accuracies of different authors. Tightly clustered authors are more likely to have a
new embedding be close to the average, while spread out authors, especially ones like Eelyn, with
some embeddings quite far away from the main cluster, are less likely to have a new embedding be
close to the average and be predicted correctly (as well as the possibility of overlap). This reveals
a potential problem with our method of fusing embeddings for a given author. One could imagine
an extreme case in which an author had two distinct clusters. The averaging approach would yield
a value in the middle, leading to low accuracy. An alternate method that kept track of more of the
training embeddings could use an algorithm like k-nearest neighbors to potentially do even better.

6 Conclusion/Future Work

The ANN model with CountVectorizer tended to outperform the other models across the datsets.
Its success compared to more complicated models indicates something about the task of authorship
identification. In starting out this project, we hoped that we would be able to train a model that could
pick up on the intrinsic style in an author’s writing, a task moree suited to models using GloVe or
BERT or RNNs. However, our results show that authorship identification in the context of our project
can be more easily solved by brute force, by counting as many words as possible until you find
keywords that are somewhat unique to a particular author. The ANN therefore performed well on this
easier task, while the BILSTM and sentence embedding models were less successful in a harder task.

As we mentioned, this is a case of overfitting to the dataset, and it is unlikely that our model would
perform as well as it did in a practical setting (if one of the C50 authors were to write a new article on
a new topic). Therefore, despite the impressive accuracy of the ANN, it would not be useful for some
of the topics we discussed, such as fake news detection. We believe that taking more care in training
a model that specifically learns style would be more useful, and is something we would be interested
in trying out in the future. One idea would be using ideas from CNN architectures such as neural
style transfer or facial recognition algorithms that are more traditionally used on images. These could
prove more successful in extracting the style of an author’s writing instead of the content.

Overall, the more sentences we had mapped to each author, the better the accuracy was. If we had
more computational resources and time, we would explore training for more sentence sizes, as the
result for the BILSTM with G-50 decreased in performance compared to G-10. This indicates that
there could be an optimal number of sentences, above which performance begins to decrease. Further
investigation of different-sized mappings would allow us to answer this question.

7 Contributions

Jasper worked on parsing the Gutenberg dataset and built the ANN architecture. Enok worked on
parsing the C50 dataset and developed the RNN architectures. We collaboratively made the sentence
encoder and wrote the final paper.

References

[1] Rhodes D. Author Attribution with CNN’s. https://cs224d.stanford.edu/reports/RhodesDylan.pdf, 2015.

[2] C. Sanderson and S.Guenter. Short Text Authorship Attribution via Sequence Kernels, Markov Chains and
Author Unmasking: An Investigation. In Proceedings of the International Conference on Empirical Methods in
Natural Language Processing, pages 482491, 2006.

[3]1 M. Koppel, J. Schler, and E. Bonchek-Dokow. Measuring Differentiability: Unmasking Pseudonymous
Authors. Journal of Machine Learning Research, 8:12611276, 2007.

[4] Zhou, Liuyu Wang, Huafei. News Authorship Identification with Deep Learning. Stanford, CA.

[5] Talati, Arth. Deep-Learning-based-Authorship-Identification, https://github.com/arthtalati/Deep-Learning-
based-Authorship-Identification, 2020.

[6] Shibamouli, Lahiri. "Complexity of Word Collocation Networks: A Preliminary Structural Analy-
sis. Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter
of the Association for Computational Linguistics. Association for Computational Linguistics, p.96-105,
http://www.aclweb.org/anthology/E14-3011. 2014.

[7] Zhi, Liu. National Engineering Research Center for E-Learning, Hubei Wuhan, China.
https://archive.ics.uci.edu/ml/datasets/Reuter_50_50

[8] Qian, C., He, T., Zhang R. "Deep Learning based Authorship Identification." Stanford Department of
Electrical Engineering, Stanford, CA, 2017.

[9] Krasser, Martin. face-recognition, https://github.com/krasserm/face-recognition, 2019.
[10] Scikit-learn: Machine Learning in Python, Pedregosa et al., IMLR 12, pp. 2825-2830, 2011.

[11] Bird, Steven, Edward Loper and Ewan Klein, Natural Language Processing with Python. O’Reilly Media
Inc., 2009.

[12] Chollet, E., others. Keras. GitHub. Retrieved from https://github.com/fchollet/keras, 2015.

[13] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan,
Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison,
Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan
and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith, PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing
Systems 32. Curran Associates, Inc. p.8024-8035, 2019.

[14] Reimers, Nils and Gurevych, Iryna. "Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks". Association for Computational Linguistics, 2019.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Artificial Neural Network with Word Counts
	RNN Architectures with GloVe
	Latent Space Encoder with Triplet Loss

	Results
	ANN and BiLSTM Results
	Sentence Encoder Results

	Conclusion/Future Work
	Contributions

