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Abstract: 
 
 An issue with standard autoencoders (AEs) and variational autoencoders (VAEs) is that the latent 
space fails to capture local information in the input image. Capturing local information is important for 
distinguishing brain regions in T1 weighted MRI imaging. One method proposed in the past to address 
this is the vector quantized VAE (VQVAE), which uses a codebook to transform the encoder output into a 
discrete latent space through clustering. We find that while the VQVAE improves with K Means 
initialization (SSIM: 0.73), a self-organized map VAE (SOMVAE), which maps each voxel onto a 2D 
grid is better able to preserve topological features of the image and achieve better reconstruction (SSIM: 
0.82). We also test a recently invented probabilistic SOMVAE (PSOMVAE) which assigns a probability 
distribution over the whole grid for each voxel. In the end, while the PSOMVAE achieves best 
reconstruction performance (SSIM: 0.93) it results in an overly smooth SOM codebook that lies far from 
the encoder output. On the other hand, with SOMVAE, despite worse reconstruction, we were able to 
successfully embed closer brain regions onto closer nodes in the SOM grid.  
 
Introduction:  
 
 One of the problems with traditional VAEs (variational autoencoders) with the domain of image 
reconstruction is that they result in images which can lack detail and sharpness. This is a result of the 
continuous multivariate normal 𝑁(0, 𝐼) latent space used in traditional VAEs. To address this issue, van 
der Oord et al developed the VQVAE (vector quantized variational autoencoder) which consists of a 
categorical (discrete) latent space with dimension 𝑒 ∈ 	ℝ!	×	$ where K is the number of embeddings and 
D is the dimension of each embedding vector [1]. Previously, in the context of MRI neuroimaging data, 
VQVAEs with 3D convolutions have been recently used to reconstruct T1 as well as diffusion weighted 
images (DWI) through a U-net (or U-net like) architecture [2]. However, one of the issues is that the 
codebook (mapping from the voxels to the embedding latent space) is a global codebook. Although better 
than a traditional VAE, it still does not capture local region information very well. To do so, it would be 
better to design a codebook that maps local brain regions to the same embeddings. Some work to preserve 
local information has been done in the context of 2D images, where a PixelCNN architecture was 
combined with the VQVAE to model a prior over the latent space. The goal of this work will be to 
perform a similar task of capturing local information for T1 weighted MRI data. To evaluate the models, 
we will use fidelity of reconstruction as measured by SSIM (structural similarity) with a uniform kernel 
and PSNR (peak signal to noise ratio). However, as the goal is also to ensure a rich codebook, we will 
assess the number of unique embeddings that are used by the quantizer layer. As such, a model with high 
SSIM and PSNR but a low number of unique embeddings is not useful for our purposes as the lack of 
embeddings indicates that no useful low-dimensional representations were being learned.  
 
Dataset & Preprocessing: 
 

We are using a neuroimaging dataset of 179 cognitively normal patients from the OASIS 
database. The dataset is split into 128 training, 23 validation, and 28 for testing. The images have 1 
channel and are of shape (137,176,137) but were padded to become (144,176,144) for compatibility with 



the base convolutional encoder-decoder architecture. Following this, the images were all Z-normalized to 
ensure the magnitude of the voxel values was not too large. A batch size of 32 was used for training.  
 
Methods:  
 

As a baseline, we started from the 3D VQVAE architecture from Ayub et al that was previously 
used to restore cropped DWI MRI images here https://github.com/RdoubleA/DWI-inpainting. The base 
architecture consists of a 3D convolutional encoder, vector quantizer codebook, and 3D deconvolutional 
decoder layer. The encoder consisted of 4 convolutions with batch norm and ReLU activations while the 
decoder consisted of 4 deconvolutions with batch norm and ReLU activations in all layers except for the 
output layer. The filter size (set to 4) doubled after each layer but was set equal to the embedding 
dimension in the last encoder layer before the codebook. In all the experiments shown, the dimension of 
the codebook was set to 32 while the number of embeddings was set to 256. The original model used for 
DWI MRI also made use of skip connections in a U Net architecture, although we found these to be 
suboptimal for learning a rich set of embeddings in the codebook upon experimentation, and thus they 
were turned off. A regular autoencoder (AE) with just the straight through encoder-decoder and a regular 
variational autoencoder (VAE) with sampling from N(0, I) in the latent space were also used as baselines 
to assess pure image reconstruction, so that we could determine how the inclusion of the codebook 
quantizer layer impacts this. Training for all models was performed with the Adam optimizer and learning 
rate of 0.005. The initial loss function used in the VQVAE was:  
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In the equation above, 𝑥!"  corresponds to the reconstructed image from the quantized representation 
(derived from the codebook), so the first term is the reconstruction loss. The other two terms respectively 
correspond to the codebook loss and commitment loss which act to ensure that the output of the encoder 
and the embeddings do not rapidly fluctuate [3]. It should be noted the original architecture for VQVAE 
only indirectly optimizes the codebook loss through an exponential moving average (EMA) update. 
Conceptually, during training the codebook weights (256 x 32) move closer to the 32 channel voxels of 
the incoming encoded image and vice versa. This can be seen as an online form of clustering, where each 
encoded voxel 𝑧$% is assigned to the nearest codebook weight 𝑒&%  and the network is updated via minibatch 
gradient descent. In addition to the loss function (which is not necessarily comparable between different 
codebook architectures), the structural similarity (SSIM) and peak-signal-to-noise ratio (PSNR) are used 
to evaluate the reconstruction. Additionally, to check that the codebook is being updated correctly, we 
performed t-distributed stochastic neighbor embedding (TSNE) with the encoder output and codebook as 
well as assessed the number of unique embeddings on a selected image in the training set.  
 
 One of the problems we encountered with the baseline VQVAE model was that of the codebook 
initialization. The first thing we tried is using the regular AE weights as initializations for the encoder and 
decoder, and exploring a standard K means clustering based initialization based on the regular AE 
encoder output. Furthermore, the original VQVAE loss in equation (1) only uses the reconstruction output 
from the quantized representation of the encoded image. As this could result in worse reconstruction due 
to too much compression, we opted to try a model which added a reconstruction term based on the 
reconstruction from the direct encoder output 𝑥$"  (Note: 𝛾$ + 𝛾! = 1, we chose (𝛾$, 𝛾!) = (0.8, 0.2)). This idea has 
been used in a similar self- organized-map (SOM) codebook architecture [4] 
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  In addition to the VQ codebook architecture we also explored the actual self-organized map 
(SOM) based codebook grid, also with a K means initialization [4]. Unlike the VQ codebook which 



consists of disjoint clusters, the idea of a SOM is to enforce more of a topological structure by organizing 
its nodes (which each consist of a 32-dimensional embedding vector) in a grid. At a high level, each voxel 
is still mapped to a best matching unit (BMU) vector in a node like the VQ, but this time the immediate 
neighborhood of nodes 1 away to the BMU also gets updated to be closer to the BMU. Both a rectangular 
grid (where all edge nodes would have fewer neighbors) and a toroidal grid (nodes at the border of the 
corresponding rectangular grid have a neighbor on the opposite side, thus all nodes have an equal 
neighborhood size) were explored. The codebook loss (the last 2 terms in (2)) were modified to include a 
term to keep the quantized and encoded representation similar as well as a term to keep the neighborhood 
of the BMU (including itself) close to the encoder output [4]:  
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Our SOM grid also used K means for initialization of the codebook, but we also tried the original 
Kohonen non-gradient based SOM as initialization as done by some literature since we postulated this 
could make the nodes closer together to start with and lead to faster convergence of the codebook loss [5]. 
The SOM model in Equation (3) still uses hard cluster (node) assignment. As hard cluster assignment 
could result in loss of information content in the image, another model we explored was a probabilistic 
SOM introduced in Manduchi et al, which assigns probabilities 𝑠%& to each node j for a given voxel i 
based on the t-distribution with degrees of freedom df. In this model, there is no quantized representation 
and the direct encoder output is fed to the decoder, but loss terms corresponding to the SOM codebook 
are added.   
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In equation (5), increasing 𝛾 results in a greater degree of hard cluster assignment, while increasing 𝛽 
results in a smoother SOM grid, with neighbors closer to each other [5]. Note that the PSOM VAE 
inherently is forced to use all the embeddings in the codebook (to varying degrees). For the SOM-VAE 
and PSOM-VAE we also experimented with using a sampled encoded output from a N(0, I) latent space 
layer along with a standard VAE KL divergence loss instead of using the encoded output directly. We call 
these models the “continuous” VQVAE, SOM-VAE, PSOM-VAE referring to the continuous N(0,I) 
latent space.  
 
Results:  
 
 

Model  Init Epoch
s 

Loss 
Eqn 

Hyperparameters Train MSE (Val 
MSE) 

Train SSIM 
(Val SSIM) 

Train PSNR 
(Val PSNR) 
(dB) 

# of unique 
embeddings 
used  

Base VQVAE w/Skip 
(rand init) 

rand 100 (1) 𝛽 = 6 0.00025 (0.00035) 0.97 (0.97) 33.1 (33.7) 3/256 

Base VQVAE (rand init) rand 120 (1) 𝛽 = 6 0.0045 (0.0062) 0.60 (0.61) 19.5 (20.3) 3/256 
Regular AE --- 240 --- --- 0.0011 (0.0016) 0.87 (0.87) 24.9 (25.5) --- 
Regular VAE -- 250 --- --- 0.0160 (0.022) 0.57 (0.58) 19.3 (20.1) --- 
VQVAE w/Skip  AE KM 100 (1) 𝛽 = 6  0.98 (0.98) 32.8 (33.5) 1/256 
VQVAE  AE KM 120  (1) 𝛽 = 6 0.0060 (0.0084) 0.63 (0.63) 19.8 (20.6) 46/256 
VQVAE (AE KM, rand 
wts) 

AE KM 
rand wt 

120 (1) 𝛽 = 6 0.0063 (0.0087) 0.50 (0.52) 18.3 (19.0) 2/256 

New VQVAE  AE KM 120 (2) 𝛽 = 6, 𝛾" = 0.5, 𝛾#
= 0.5 

0.0055 (0.0067) 0.72 (0.72) 21.7 (22.4)  58/256 

New VQVAE  AE KM 120 (2) 𝛽 = 6, 𝛾" = 0.8, 𝛾#
= 0.2 

0.0045 (0.0063) 0.73 (0.73) 21.7 (22.3)  56/256 



SOMVAE rectangular AE KM 700 (3) 𝛼 = 6, 𝛽 = 1, 𝛾"
= 0.8, 𝛾# = 0.2 

0.30 (0.45) 0.82 (0.82) 23.5 (24.1) 113/256 

SOMVAE rectangular AE SOM 700 (3) 𝛼 = 6, 𝛽 = 1, 𝛾"
= 0.8, 𝛾# = 0.2 

0.39 (0.74) 0.81 (0.81) 23.3 (24.0) 51/256 

SOMVAE toroid AE KM 700 (3) 𝛼 = 6, 𝛽 = 1, 𝛾"
= 0.8, 𝛾# = 0.2 

0.17 (0.23) 0.82 (0.82) 23.6 (24.2) 90/256 

SOMVAE toroid 
Continuous latent 

VAE 
KM  

700 (3) + 
VAE KL 
div 

𝛼 = 6, 𝛽 = 1, 𝛾"
= 0.8, 𝛾# = 0.2 

0.986 (1.37) 0.62 (0.63) 19.9 (20.6) 6/256  

PSOMVAE toroid AE wts 
only 

800 (4) 𝜸 = 𝟏, 𝜷 = 𝟏 0.71 (0.98) 0.91 (0.91) 26.4 (27.0) --- 

PSOMVAE toroid AE wts 
only 

800 (4) 𝜸 = 𝟏, 𝜷 = 𝟎. 𝟑 0.21 (0.29) 0.91 (0.91) 26.4 (27.0) --- 

PSOMVAE toroid AE KM 800 (4) 𝛾 = 10, 𝛽 = 1 1.05 (1.34) 0.90 (0.90) 25.9 (26.5) --- 
PSOMVAE toroid 
Continuous latent 
 

 

VAE wts 
only 

800 (4) + 
VAE KL 
div 

𝛾 = 1, 𝛽 = 1 1.88 (2.56) 0.62 (0.62) 19.9 (20.6) --- 

Table 1: Experimental Results. The PSOMVAE performs the best (outside of the baseline VQVAE, 
which didn’t learn any embeddings) in terms of reconstruction SSIM and PSNR. Note the MSE loss 
values are not comparable across different models. Other codebook architectures perform worse than a 
regular AE. The continuous VAE based architectures (and a regular VAE) perform surprisingly poorly for 
this dataset. No practical overfitting is suspected of any model as the validation SSIM and PSNR metrics 
are very close to the training, even if the loss may be slightly higher. Choice of hyperparameters for the 
PSOMVAE does not seem to impact the results substantially.  
 
 According to Table 1, the baseline VQVAE with skip connections is able to perform the best on 
the pure image reconstruction task with SSIM=0.97, but fails to accomplish the goal of learning a rich 
codebook as evidenced by only 3/256 embeddings used. We suspect the skip connections offered the 
model a way to easily cheat and simply copy the input to the output. Indeed, when the skip connections 
were turned off, the baseline VQVAE model reconstruction dropped to SSIM=0.60 though the model still 
learned no substantial embeddings. This is also evidenced by the TSNE plot in Figure A1, where the 
dictionary (codebook)  points are not mixed in well with the encoder output. We suspected this could be 
caused by poor codebook initialization, which has not been discussed substantially as previous work 
simply used a random normal or uniform initialization [1, 2]. Using K means initialization marginally 
improved the reconstruction SSIM to 0.63, but the main improvement was in the # of unique embeddings, 
which became 46/256. Interestingly, K Means initialization was not enough and the model required 
weight initialization based on the regular AE (which had SSIM = 0.87). The fact that the baseline 
VQVAE with skip connections also failed to learn substantial embeddings even after AE weight and K 
means initialization confirmed our intuition that skip connections are a poor choice for learning a rich 
codebook. The actual number of unique embeddings used was an issue which was not explored in the 
original paper for the baseline model by Ayub et al. At this point, our main issue was still that the 
codebook was not being fully utilized, and the reconstruction SSIM was still much worse than a regular 
AE. By adding a loss term based on the direct encoder output, we were able to improve the # of unique 
embeddings to 53/256 and SSIM to 0.73. This is likely a result of allowing gradient information of the 
reconstruction loss to pass to the codebook further, whereas this does not happen with just a loss based on 
the quantized reconstruction [4].  
 The biggest improvement came when we decided to change the architecture entirely to that of a 
SOM grid. This was motivated by the intuition that the VQVAE embeddings were very disjoint, and there 
may be loss of topological information. Only a subset of embedddings were actually being used, so we 
intuitively felt that if other embeddings could be forced closer to this subset, they may also become 
occupied. This was confirmed when we saw the reconstruction SSIM improve to 0.82 and number of 
unique embeddings used to 105/256 with a rectangular SOM grid. A toroidal grid had the same 
reconstruction SSIM but a slightly lower number of unique embeddings at 90/256 used.  A K means 
initialization for the SOM VAE performed better than a regular SOM (non-gradient based) initialization, 
despite the latter having been used in other work. The TSNE for the SOMVAE in Figure 1 visually 
confirms the encoder output lies close to the codebook. In the case of the SOMVAE, we can 



approximately visualize the topology of the grid by summing across the channel dimension of 32 in 
Figure 1. Quantitatively, the Pearson correlations between neighbors were also found to be >0.95 in most 
cases. However, since the reconstruction SSIM was still below that of the regular AE and the full 
embeddings were not being utilized, we investigated the probabilistic SOM (PSOM). The PSOM 
essentially forces the model to use all embeddings and nodes for every voxel, to varying degrees based on 
a probability rather than hard cluster assignment. The PSOM VAE with a toroidal grid resulted in an 
SSIM of 0.91 and was not very sensitive to the hyperparameters of the loss. The map (summed across the 
channel dimension) is shown in Figure 2. For the SOMVAE, based on the brain image slice in Figure 2, 
we appear to have successfully mapped local brain regions onto the same locations in the grid, thus 
preserving topology. In the end, we confirmed the lack of overfitting by evaluating the SOMVAE and 
PSOMVAE on the test set, where the SSIM=0.81 and SSIM = 0.90 respectively.  

For the PSOMVAE with almost all the nodes surprisingly having a very similar vector. In theory, 
we suspected the over smoothness of the grid would be due to the hyperparameters of the PSOMVAE but 
these did not empirically affect the picture much [5]. To investigate this further, we performed TSNE and 
as it would turn out—the image encodings and dictionary were unfortunately very separated. This may be 
due to the lack of a quantized reconstruction term in the loss in the PSOMVAE equation (4) as opposed to 
the SOMVAE equation (3). The TSNE plot suggests the model is likely finding a region around a single 
point for all the codebook weights. Thus, although the reconstruction of the PSOMVAE as of now is very 
good, the model is not finding a codebook which captures the information in the image. The SOMVAE 
does this better but suffers from worse reconstruction SSIM compared to the standard AE. Interestingly, 
we found in experiments when K Means initialization was used for the PSOMVAE, the loss diverged 
within the first 10 epochs and training was interrupted. This observation combined with Figure 1 suggests 
the PSOMVAE prefers to keep the codebook and encoder output well separated, though we don’t know 
why nor why this may result in improved reconstruction SSIM relative to the regular AE. Lastly, we also 
tested a continuous latent space VAE along with the SOMVAE and PSOMVAE algorithms, but based on 
Table 1 this performed worse than using a regular AE in the encoder, which is in contrast to the findings 
of Manduchi et al [5]. 

 
 

 
 
 
 
 
 
 
 
Figure 1: SOM and PSOM codebooks and the projection of the SOM grid onto a brain slice. Similar and 
closer together regions of the brain are mapped onto closer regions on the grid, which the colors show.  
 
Conclusion/Future Work: 
 
 Overall, in this work we tested many different architectures, hyperparameters, and initializations 
for the codebook. It was found that codebook initialization via K Means on a pre-trained regular AE is 
crucial to successfully learning a substantial number of embeddings. Additionally, we found that a SOM 
grid-based codebook helps preserve the topology of the input brain image: brain regions closer together 
are assigned to the same or neighbor nodes which can be visualized in Figure 1. Using a PSOM codebook 
improved the reconstruction but resulted in a very homogenous smooth map which was far from the 
encoder output. In the future, we would like to explore how the PSOM can be modified to achieve a 
similar grid-based codebook as the SOM while simultaneously retaining reconstruction fidelity as 
assessed by SSIM.  

 
 

 
 

 
 

 
 



Contributions:  
 
My mentors Dr. Zhao and PhD student Jiahong Ouyang helped guide me with initial ideas/suggestions for 
the experiments such as the K means initialization and considering using the direct encoder output 
reconstruction as an additional term in the VQVAE loss. They also suggested and explained the idea of 
TSNE to me as an additional check beyond the # of unique embeddings to make sure the model was 
learning properly. Beyond the base VQVAE model from this github: https://github.com/RdoubleA/DWI-
inpainting all implementation/ modification of the ideas was done by me. I came up with the idea of 
trying the SOM-VAE and PSOM-VAE after reading the corresponding papers and then implementing the 
algorithms for my dataset.  
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Figure A1: TSNE of 
codebook/dictionary and encoder 
output from a sample image in the 
training set. The baseline VQVAE (no 
skip connections) has a border 
between the encoder output and 
dictionary. The encoder output and 
dictionary are more well mixed in the 
VQVAE with K means initialization 
and very well mixed with the 
SOMVAE. For the PSOMVAE, the 
encoder output and codebook are very 
distinct. 
 



 
 
Figure A2: MSE vs epochs loss curves for training and validation data for the SOMVAE. Training 
becomes noisier toward the end.  
 
 


