
Prognostic Health Management for Turbofan Engines

Aditya Gulati
adgulati@stanford.edu

Jeetsagar Ghorai
jghorai@stanford.edu

Abstract

Prognostic Health Management (PHM) is an active area of research and a multi-
billion dollar industry in the field of reliability engineering. Complex sensor
data exhibited by machines can be used to predict a bad omen (possible failure)
beforehand, further saving downtime or loss of equipment and environment. We
explore various deep learning solutions to model the spatio-temporal relationships
exhibited by NASA Turbofans. Current approaches use CNN based models to
predict Remaining Useful Life (RUL) of a system, we propose a novel CNN-LSTM
architecture and explore the power of LSTMs to model sequential data. We further
show the insights of deployment in terms of system tolerance statistics.

1 Introduction

Prognostic Health Management (PHM) is a unified framework for forecasting system health and
reliability. Most systems of interest are composed of multiple components. Failure of a component in
a system can result in adverse outcomes such as stoppage of operation, destruction of the system or
loss of life. In most cases, the failure of a component results from the degradation of said component
over the course of operation. Prognostic Health Management is concerned with forecasting potential
failures of systems by monitoring the status of the components and the performance of the system.[1]

In most problems of interest, the data is available in the form of a time series of sensor readings. Given
this time series data, the aim of PHM is to predict the Remaining Useful Life (RUL) of the system.
Predicting the potential failure of a component allows the operator to plan for repair or replacement,
mitigate downtime and ensure the safety of the equipment and the environment. Overestimating
RUL leads to an unplanned failure, whereas underestimating RUL leads to under-utilization of the
component.

The PHM problem which we have worked on in this paper is a regression problem. Given multivariate
time-series sensor data we map it to the RUL at every given time-step. Such problem was usually
solved by domain experts who are aware of the system dynamics, however with increasing complexity
of system everyday it is almost impossible for human to model all complex non-linear relationships
in the system. In this paper, we have introduced and explored several deep learning techniques to
solve the problem.

2 Related work

PHM is an active area of research in reliability engineering and PHM techniques have been applied
to a variety of systems such as hydraulic pumps[8], Lithium ion batteries[7], MOSFETs[6] etc. There
are various statistical[10], signal processing[9], machine learning[11] and deep learning[4] methods in
sensor data analytics. In paper[4] the authors use 1-D CNN and model it as a time-series regression
problem. This paper acts as a baseline and starting point for our work. In DeepSense[5], the authors

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 1: How the altitude, Mach number, throttle-resolver angle and temperature at fan inlet changes
throughout a single flight of unit 20

Figure 2: Kernel density estimations of altitude, Mach number, throttle resolver angle and temperature
at fan inlet for 6 training and 3 test units. The flight characteristics of units 14 and 15 are different
from those of the training units.

propose a novel CNN-LSTM architecture to model complex spatio-temporal relationships in time-
series data. Although the paper is used as tracking methods, we take this as an inspiration for our
project.

3 Dataset

We have used the Turbofan Engine Degradation Simulation Data Set-2 published by the Prognostics
Center of Excellence at NASA. This dataset contains run-to-failure trajectories of a number of
turbofan aircraft engines.[3]

The published repository contains multiple datasets. One representative dataset, DS02, consists of
run-to-failure simulation data for nine engines. In this dataset, the operating conditions are described
using 4 attributes (W). The model outputs the values of 14 measured physical properties (Xs), the
readings from 14 virtual sensors (Xv) and 3 model efficiency parameters (θ). Together, there are 35
features at every time-step. In the dataset, the different engines are referred to as units. The units with
u = 2, 5, 10, 16, 18, 20 are the six training units (training set) and the units with u = 11, 14, 15 are
the three test units (test set). Some characteristics of the dataset are shown in Figure 4 and Figure 2.

It is worth noticing in Figure 2 that operating conditions for unit 14 (marked in red) significantly
deviates from all the other engines, this makes our problem more challenging and demands a robust
well-generalised solution. Table 1 describes the unit wise distribution of the whole dataset along with
total number of cycles operated till end of life. One cycle implies a journey from take-off to landing,
our RUL in dataset is in terms of cycles. We predict the remaining useful cycles under which the
engine can operate at a given time.

4 Methods

Based on the available sensor attributes we divide our methods primarily into two different types of
approaches. 1) Data-driven approach where we directly use the raw-sensor data and map it to RUL,
2) UKF based physics calibrated model. Both of the approaches are described below and in each
approach we use CNN, CNN-LSTM and CNN-2StackedLSTM as deep learning model.

2

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository

Unit mi tEOL

2 0.85M 75
5 1.03M 89

10 0.95M 82
16 0.77M 63
18 0.89M 71
20 0.77M 66
11 0.66M 59
14 0.16M 76
15 0.43M 67

Table 1: Unit-wise distribution, Unit 2,5,10,16,18,20 are in train set and 11,14,15 are in test set

.

Figure 3: The non-linear system dynamical physics model is first approximated as a FNN (trained
offline), which is used as a system model in the UKF tracking algorithm, UKF further results
in the physics enhanced input space which is merged with the simulation input space resulting
[w, xs, x̂s, x̂v, θ̂] as the final physics-enhanced input. This further serves as our input for the deep
learning model.

4.1 Data-driven model

In this approach we learn a mapping from enhanced input space [w, xs, xv, θ] to RUL target Y using
a particular neural network architecture. The enhanced input space in the dataset is obtained after
using a simulation software N-CMAPPS which deviates from the real physics process of the turbofan
engine. To mitigate this reality gap we present a calibration based approach in next subsection.

4.2 UKF calibrated physics-based model

The sensor readings xs, xv and model health parameters θ are obtained from a simulation software.
This sensor consists of noise and is much deviated from the real world process. To counter this we
use an Unscented Kalman Filter (UKF) as a tracking algorithm and induce the system physics. UKF
tracking algorithm requires the current sensor readings and physics model as input along with some
hyper-parameters to drive the iterative process. The above tracking algorithm provides us with a
more accurate and correlated (physics enhanced) inputs [x̂s, x̂v, θ̂] which are merged with operating
conditions and sensor inputs [w, xs] . The resultant physics enhanced input space is [w, xs, x̂s, x̂v, θ̂]
which is mapped to target RUL Y using the neural network architecture. Detailed flow of this
physics-based modelling is given in description of Figure 3.

4.3 Model Architectures

The data is first divided into 50xC 2D-vector segments for 50 timestamps (with C sensor attributes),
this input is fed into a 1D-CNN[4], further mapped to RUL. The loss function used here is Mean
Squared Error. This approach acts as baseline result. As the data fed is time-series we the final layer
of base-cnn models spatial sequential relationships. Recurrent Neural Networks (RNN), perform

3

Figure 4: (L to R) 1) Baseline 1-D CNN with Dense layer at the end. 2) CNN-LSTM Architecture
modelling the temporal relationships at the end of network, stacinkg of another LSTM here would
make it CNN-2StackedLSTM

exceptionally well at prediction tasks involving temporal sequences. The dataset under consideration
consists of time series data of sensor readings. That is why, we decided to investigate the potential
of RNN networks for predicting the RUL. In our experiments, we used LSTM networks instead of
RNN. More details of architecture are given in description of Figure 4. In next section we discuss the
performed hyper-parameter tuning and results of all networks under all models.

5 Experiments

We have explored three types of architectures BaseCNN, CNN-LSTM and CNN-2StackedLSTM.
Under each architecture we perform our experiments on both types of methods (data-driven and
UKF physics based method). We train our neural networks for 60 epochs with different batch sizes
(256,512,1024). The other architecture based hyper-parameters are filter kernel size (5,7,10), Dropout
(0,0.2), Number of filters in each layer (5,10,20), Batch-Normalisation (Yes/No) and sequence length
of layer fed into LSTM (5x10, 10x5).

The most important hyper-parameter in our experiments is choosing the filter size, a lower size can
lead to under-fitting and a higher number can lead to over-fitting on the training set. Hence we first
tune on this hyper-parameter. The sequence length of input to LSTM is also an important parameter
as it actually defines the temporal nature of the data. Some of the results from above tuning are
tabulated and explained in next section.

6 Results

The evaluation metric which we have used in our experiments are RMSE and NASA’s scoring function
(s) (between actual and predicted RULs).

s =

m∗∑
j=1

exp(α|∆(j)|)

RMSE =

√√√√ 1

m∗

m∗∑
j=1

(∆(j))2

where ∆(j) is difference between predicted and actual RUL, m∗ is length of test-dataset. In scoring
function α = 1

13 when RUL is under-estimated and α = 1
10 when RUL is over-estimated, hence

penalising it more when RUL is over-estimated which is more costly.

The above metrics are calculated and tabulated in Table 2 for different set of experiments. We observe
the best performance after using CNN-LSTM architecture with physics augmentation with 10 filters,
5 kernel size and 5x10 sequences in LSTM.

We analyze the unit wise results obtained by our best performance model and provide deployment
insights. In figure 5 we can see how our best model fits well on 2 test units (11 and 15), and remains
as underestimate on training set. In figure 6 we take mean of predicted RUL per actual cycle and set

4

Figure 5: Unit wise predicted and true RUL for best (highlighted) model.

a deploy-able threshold of 8, we can observe unit 11 and 15 remains in deploy-able time for long
duration and unit 8 for considerable amount of time. More details are given in the description of
figure 6.

Model RMSE NASA fn (s * 106)
BestCNN 7.662 2.15

BestCNN-Physics 6.9274 2.16
BestCNN-LSTM 7.4127 2.21

BestCNN-LSTM-Physics 6.6639 2.01
BestCNN-2LSTM 7.7764 2.23

BestCNN-2LSTM-Physics 6.81459 2.05
CNN-Kernel10 8.4524 2.85
CNN-Filters20 7.9657 2.34
CNN-Filters5 9.8745 2.56

CNN-LSTM10x5 7.9564 2.24
Table 2: Evaluation of different models on test set

.

7 Conclusion and Future Work

We have explored the power of LSTMs to model temporal relationships in sequential data and
showcase that it performs better than only CNN. Currently we have modeled our problem only on one
fleet of engines in our dataset (DS02), exploring the power of domain adaptation or transfer learning
to utilise the learnings on another fleet can be a good future research work.

8 Contributions

Both the authors have contributed equally as a team to this project. Specifically, Aditya worked on
formulating/designing the problem, enabling the physics based model and compiled everything in
a Python-UI to show a visualisation of deployment (shown in video) further enabling it to be an
end-end AI product. Jeetsagar worked on preprocessing the data, preparing the data pipeline for both
tensorflow and torch approaches along-with exploring the scope of applicability of LSTMs for our
problem. We thank our CS230 course mentor Huizi Mao for guiding us throughout this project with
his encouraging feedback.

5

Figure 6: Deployment Statistics for best performing model. Horizontal red line defines the acceptable
deviation range, blue line represents the actual deviation, green line represents horizon of deviation
and black line represents the maximum cycle after which we are always in deploy able range.

References

[1] Kwok L. Tsui, Nan Chen, Qiang Zhou, Yizhen Hai, Wenbin Wang, "Prognostics and Health Management: A
Review on Data Driven Approaches", Mathematical Problems in Engineering, vol. 2015, Article ID 793161, 17
pages, 2015. https://doi.org/10.1155/2015/793161

[2] Biggio Luca, Kastanis Iason, "Prognostics and Health Management of Industrial Assets: Cur-
rent Progress and Road Ahead", Frontiers in Artificial Intelligence,VOL 3, 2020, 88 pages,
https://www.frontiersin.org/article/10.3389/frai.2020.578613, 10.3389/frai.2020.578613, 2624-8212

[3] M. Chao, C.Kulkarni, K. Goebel and O. Fink (2021). "Aircraft Engine Run-to-Failure Dataset under real flight
conditions", NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository),
NASA Ames Research Center, Moffett Field, CA

[4] Chao, Manuel Arias et al. “Fusing Physics-based and Deep Learning Models for Prognostics.” ArXiv
abs/2003.00732 (2020)

[5] Shuochao Yao and Shaohan Hu and Yiran Zhao and Aston Zhang and Tarek Abdelzaher, "DeepSense: A
Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing", ArXiv abs/1611.01942

[6]Renwick J., and Kulkarni C. and Celaya J., Analysis of Electrolytic Capacitor Degradation under Electrical
Overstress for Prognostic Studies, Annual Conference of the Prognostics and Health Management Society, 2015

[7]Liu, Datong and Luo, Yue and Peng, Yu and Peng, Xiyuan and Pecht, Michael, Lithium-ion battery remaining
useful life estimation based on nonlinear ar model combined with degradation feature, Annual Conference of the
Prognostics and Health Management Society 2012, 24–27, 2012

[8] Goebel, Kai Frank,Management of uncertainty in sensor validation, sensor fusion, and diagnosis of mechani-
cal systems using soft computing techniques, Thesis, University of California, Berkeley, 1996

[9] Wang, Fengtao and Zhang, Yangyang and Zhang, Bin and Su, Wensheng, Application of Wavelet Packet
Sample Entropy in the Forecast of Rolling Element Bearing Fault Trend, Multimedia and Signal Processing
(CMSP), 2011 International Conference on, 12–16, 2011

[10] Olivares, Benjamín E and Munoz, Cerda and Orchard, Marcos E and Silva, Jorge F, Particle-filtering-based
prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration
phenomena,Instrumentation and Measurement, IEEE Transactions on, Vol. 62 No. 2, 364–376, 2013

[11]Contribution of belief functions to hidden markov models with an application to fault diagnosis., Ramasso,
Emmanuel, Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing., 1–6,
2009

6

	Introduction
	Related work
	Dataset
	Methods
	Data-driven model
	UKF calibrated physics-based model
	Model Architectures

	Experiments
	Results
	Conclusion and Future Work
	Contributions

