
 1

Deep learning approach for optimizing mobile

handovers and reducing measurement report in

LTE/5G Self-Organizing Networks

Sourav Bandyopadhyay

AI Graduate student

souravb@stanford.edu

Abstract

Self-organizing networks are used in a wireless network system to assign channels and other
radio parameters, monitor coverage holes, improve mobile mobility. The motivation of this
project is to explore ways to make mobility handovers quicker so that the mobile can save
on battery for cell searching and help in assigning the best radio channel for a mobile to
maintain a good quality of service in a private network for mobile robots that are
continuously moving and needs to remain connected to a network

1 Introduction

Figure 1: Example of NS3 mobility simulator for LTE networks, Adapted from [1]

The current Self-Organizing networks are mostly rule based in the industry, and a lot of the network needs
manual interruption to setup and tune based on the performance observed, this caused a very slow feedback
loop in the network and network performing at a suboptimal level thus not meeting the Service Level
Agreements (SLA’s) and Quality of performance. To allow the network make decisions in an optimal
manner and be able to take actions ahead of time this project defines a method to predict if there is a
scenario where a mobile handover can be triggered based on mobile parameters reported and try to use the
node base (eNB) interfaces to share the context of the mobile preemptively.

2 Related work

There are several approaches that has been researched when it comes to handover and mobility optimization

 2

and load balancing mobiles a network intelligently, a basic example in a dense network can be each eNB

load balances based on the (mobiles) attached. In a handover scenario most of the handover triggers are
threshold based, that means the handover mechanism gets triggered when certain thresholds are met,
although most of these thresholds have hysteresis to avoid hard switching and certain rule-based trigger
criteria’s need to be met for a mobile to try to switch the network, these methods are suboptimal and can
cause the mobile to camp in to an eNB that may cause reduction in QoS.

There are research work happening on handover optimization and making radio-performance measurement
and fault management more preemptive, some of the methodologies I have seen are taking the temporal
characteristics of the data into account as most of the data are sequential and can be thought of start
transitions. Other methodologies that I have read are using reinforcement learning techniques like Deep Q-
learning to predict the next state of a cell in a network, other methods are mostly trying to learn the states
of the network using LSTM/RNN to predict certain parameter. Essentially all these techniques are still in
research phase, and some may be useful in a macro network, some may be good for an indoor warehouse,
robots, and drone control scenarios. In this project i am trying to define a deep-learning method which
based on the signals capture from the mobile predicts if there will be a handover or not and that the probable
handover candidate for that mobile.

Figure 2: Simulation scenario being used to generate indoor propagation data using RandomWalk2dMobilityModel

3 Dataset and Features

The data collected is over NS3 simulator, in this project I have built a realistic indoor propagation scenario
with 100 mobiles connected to a LTE network and have 21 eNBs Figure 2 showed the simulation scenario
on NS3, the relevant data is where the QoS is decreasing for a network, each mobile reports the RSRP
which the power level at which it sees the eNB it is attached to, the SINR which is the ratio if signal to
(noise + interference) and the connected cell at that time. Table 1 shows a sample form of data being used
for this project, the CELL_ID is a unique identifier to identify an eNB, in this example the UE moves from
eNB with CELL_ID 7 to CELL_ID 18 and then again to a CELL_ID 16, as we track this movement it can
be seen that the range of previous RSRP values that trigger a handover, and this can be sequential time
series data based on NS3 RandomWalk2dMobilityModel and NS3 indoor rf propagation model to simulate
walk on every direction. I have performed data cleaning to make sure if a mobile is static in a same location
and there is no change in RSRP or SINR then that data need not be used as all the data points from those
scenarios can be averaged into one data point to take that state into account. The data set is broken down
into train and validation sets, 98% is used for training and 2% is used for validation.

 3

Figure 3: Time to trigger region where the data is collected at Table 1 Shows the handover of a UE from one cell to
Source: Adapted from [2] another based on the RSRP and SINR measurements

4 Methods

The motivation of this project is this project is to find a deep learning approach to make this process
automated and help in tuning the network dynamically rather than rule based, this has a two-prong benefit,
this will help networks to meet much higher channel quality as the network learns from handover failure
areas and coverage gaps, so the handover thresholds (A1,A2,..,A5) can be optimized and reference signal
power of an operating network can be too, so make sure the maximize the coverage. Thus, will also have a
cost benefit for networks as this will help design networks with lower number of radios.

In this project I have used a many to one LSTM framework with dropout and batch normalization to find
out the temporal characteristics of the data and decide if a handover is about to happen. I am using a multi-
layer many-to-one LSTM architecture.

Figure 4: Deep learning framework used in the project

 4

5 Experiments/Results/Discussion

I implemented of the proposed models in Python, using Keras and Tensorflow, as

backend. To speed up the training Nvidia CUDA Deep Neural Network (CuDNN) library

for GPUs was used inside Nvidia GPU docker container for tensorflow. To converge at

the hyperparameters of the final model, number of layers and the number of LSTM units

in each layer, i tested five different combinations. Finally, the hyperparameters resulted in

a lowest average Mean Square Error (MSE) (over 400 epochs) were selected. I have trined

for 50,100,150,200,250,400,500 epochs, after 250 epochs I have seen decreased of the

data, I observe that, after 200 epochs, this model can achieve and maintain very high

validation accuracy independently from the number of layers and cells.

The performance evaluation of these models is performed in an offline fashion, i.e., by

comparing the real time to download for each UE, obtained after selecting the target cell

providing the lowest predicted time to download, to the one achieved by using a

benchmark approach.

Figure 5: Epoch accuracy for model training (green) validation (orange) y_axis = accuracy, x_axis = num_epoch

6 Conclusion/Future Work

I want to take this work further and train the model with more real-world data with, a part

of this implementation is going to be productized in the upcoming months and be used in

handover validation and optimization for dense indoor networks.

7 Contributions

This project was done alone by only one team member.

Reference:

[1] nsnam.org/docs/models/html/lte-design.html

[2] https://www.researchgate.net/figure/LTE-Handover-Process_fig3_283734681

[3]https://ieeexplore.ieee.org/abstract/document/8954892?casa_token=jCWAC-lMiIoAAAAA:yvSAwD0Mw-
NuITLAYktBvJDBpFKiOifk3OI6kqgAt44PONabK7dvW_dRGbRQguU5WMqLbLCfb9s

[4] https://ieeexplore.ieee.org/document/5680001

https://www.researchgate.net/figure/LTE-Handover-Process_fig3_283734681
https://ieeexplore.ieee.org/abstract/document/8954892?casa_token=jCWAC-lMiIoAAAAA:yvSAwD0Mw-NuITLAYktBvJDBpFKiOifk3OI6kqgAt44PONabK7dvW_dRGbRQguU5WMqLbLCfb9s
https://ieeexplore.ieee.org/abstract/document/8954892?casa_token=jCWAC-lMiIoAAAAA:yvSAwD0Mw-NuITLAYktBvJDBpFKiOifk3OI6kqgAt44PONabK7dvW_dRGbRQguU5WMqLbLCfb9s
https://ieeexplore.ieee.org/document/5680001

 5

[5] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8301842

[6] https://arxiv.org/pdf/1707.02329.pdf

[7] https://www.mdpi.com/2076-3417/9/15/2975/htm

[8] https://www.nsnam.org/docs/models/html/lte-user.html

[9] https://www.nsnam.org/tutorials/consortium14/ns-3-training-session-6.pdf

https://arxiv.org/pdf/1707.02329.pdf
https://www.mdpi.com/2076-3417/9/15/2975/htm
https://www.nsnam.org/tutorials/consortium14/ns-3-training-session-6.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Dataset and Features
	4 Methods
	5 Experiments/Results/Discussion
	Figure 5: Epoch accuracy for model training (green) validation (orange) y_axis = accuracy, x_axis = num_epoch
	6 Conclusion/Future Work
	7 Contributions

