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Abstract—We want to create a model that will 
be able to predict which viruses have higher 
human adaption and have an ability into 
becoming a pandemic. We will be focusing on 
predicting the viral host adaption based on the 
viral genome sequence. Such predictions will 
help the people to focus on specific viruses to 
find more relevant solutions in advance. This 
endeavor will be of great value in containing 
future outbreaks and save millions of lives. We 
will evaluate our results by testing the currently 
existing data on Covid-19 and train on  viruses 
like Rabies, etc. We can have different viruses 
(4-5 different datasets) and the subsequent 
genome sequences to test against human dna 
sequencing. 
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I. INTRODUCTION (HEADING 1)


In the current era, where Covid-19 has hit the 
world as a pandemic, most scholars are attempting 
to create different models to help out the humanity 
fight with virus and enable our researchers and 
medical practitioners to come up with better 
solutions and medication for the  people who are 
affected by the virus. The current stats are 
devastating and affecting the economy heavily. If 
only, there was a way to predict which viruses have 
better human adaption and are highly contagious, we 

should be able to advance in finding a vaccination 
for those deadly viruses in a timely manner. This 
small project is just a try to help with the existing 
situation and create a small tool that can be useful in 
avoiding such Pandemics in the future. We are going 
to take RNA type viruses and predict the human 
adaptability of those viruses based on a percentage. 
We will consider different viruses like Rabies, Sars, 
Covid-19 etc to create a dataset with the respective 
nucleotide sequences labeled as per their relative 
scientific names. Our goal is to create a model to 
predict the probability of human adaptation given a 
subsequence of the virus.  document and are 
identified in italic type, within parentheses, 
following the example. We are going to use deep 
learning models for this, which include recurrent 
neural network, long short term memory and tensor 
flow for this project. The end result will be a graph 
for different viruses (Names on the X-axis) and the 
probability of their adaptation by a human on the Y-
axis.


II. PROPOSED IDEA


A. Method


We can use deep neural network architecture for 
solving this problem. We will be using Python, 
TensorFlow and Keras as our technical stack. We 
can use RNN type (Recurrent Neural Network) 
based algorithm ex. Long short-term memory & 
CNN (Convolutional neural network) for the same. 
We will also need to compress the viral dna 
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sequencing information in a compressed format but 
ensure to minimize the loss of data. We will often hit 
the results which are far from idol, we will need to 
re-align these results to ensure the model training is 
done correctly.


B. Implementation


i) Previous Method


We collected nucleotide sequencing data from the 
European Nucleotide Archive and labeled our set 
correctly as advised by NCBI with respective 
scientific names.  Now for any dataset we are going 
to divide it into three types: 1. Training 2. Testing 3. 
Validation. Once, we have prepared our input 
correctly, our neural network should be enabled to 
predict the probability of the host’s ability to adapt 
to the viruses. One virus sequence is generated per 
host. We will create 1 training set per epoch from the 
existing pool of virus sequences for the given host. 
This way we are able to randomize our training data 
and also use all the sequences. Long Short Term 
Memory networks (LSTMs) are kind of RNN, 
capable of learning long-term dependencies. They 
were introduced by Hochreiter & Schmidhuber 
(1997), and were refined and popularized by many 
people in the following work. They work 
tremendously well on a large variety of problems, 
and are now widely used. We will create a 
bidirectional LSTM architecture to understand the 
context in the dataset consisting of sequences of 
nucleotide data labeled in both the directions to be 
able to recognize different patterns within our data 
that may be useful for us and also enabling 
randomization of our data. Bidirectional LSTMs are 
supported in Keras via the Bidirectional layer 
wrapper which takes a recurrent layer as an 
argument. Such networks are useful in sequence 
classification problems as well. For forward 
propagation , we have forward pass, for the 
backward propagation we have backward pass and 
lastly the output neurons are passed. After the 
forward and backward passes are done, we will be 
evaluating the weights.


In general mathematical formulation for LSTM 
is:


i(t) = σ(W(i)x(t) + U(i)h(t−1))  (Input Gate)


f(t) = σ(W(f)x(t) +U(f)h(t−1))   (Forget Gate)


o(t)=σ(W(o)x(t) + U(o)h(t−1))   


(Output Exposure Gate)


c (̃t) = tanh(W(c)x(t) + U(c)h(t−1))  


(New Memory Cell)


c(t) = f (t) ◦ c (̃t−1) + i(t) ◦ c (̃t)


(Final Memory Cell)


h(t) = o(t) ◦ tanh(c(t))


ii) Current Approach


We add CNN network along with the bi-
directional Long Short Term Memory to our 
architecture with 150 nodes excluding the layer 
pertaining to the output. We also add Keras’ Conv1D 
model which creates a convolution kernel that is 
convolved with the layer input over a single spatial 
(or temporal) dimension to produce a tensor of 
outputs. We perform max pooling operation for 
temporal data and add the leaky version of a 
Rectified Linear Unit. We train each neural network 
with an epoch of 500 with equal number of 
subsequences. For the given epoch, we validate the 
given model using the validation set comparing to 
pre-existing known virus-host. When one viral sub-
sequence is entered we get viral-host activation 
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score for the given host output node and which adds 
upto 1, thus we call it the prediction score. So, each 
score predicts the probability of viral host prediction 
in this case. Now we can divide these predictions to 
give final predictions for the given sub-sequence by 
either using mean in which we show the mean score  
per host out of all the subsequences and predicts the 
host with the highest score thus, having the highest 
probability of becoming a host to the virus. The 
other method is to calculate the standard deviation 
for each score calculated and them use them as 
weights. We then combine the different predictions 
in the last stage.


III. EXPERIMENTAL RESULTS


A. Dataset


We are using virus genome structures for RNA 
type viruses (Covid-19, Rabies, etc) available on 
Kaggle. The viral genome sequencing is also 
available on the National Center for Biotechnology 
Information (NCBI)/European Nucleotide Archive 
(ENA) database website for free. We can create one 
entry of genome sequencing per virus in contact 
with a human with a minimum of 50-100 sequences. 
For the Dataset, we labeled our hosts and viruses 
using scientific names. We calculated the 0.95 
quantile of all sequence length in order to create the 
partial sequence, by either truncating the sequence 
or by padding and converted it into numerical data 
to do processing using NumPy. We append the 
subsequence in a repetitive manner in order to get 
same length subsequence for the inputs in a circular 
list fashion. For the datasets, we distributed it in 
following way: Training Set: 60%, Validation Set: 
20%, Testing Set: 20%. We consider the sequences 
as data points and host as a class. We assume that we 
are creating unbiased training model as per 
subsequences per host. We also assume that we are 
limited by the hosts which smallest subsequence of 
DNA, which means that for viruses for 
subsequences larger than the host’s subsequence, we 
will ignore the rest of the viral subsequence to 
simplify the problem which will lead to unbalanced 
data set causing bias. Instead, we feed randomized 
combination of subsequences for each host of same 

number per epoch which helps us reduce the bias for 
our training sets and we use all available sub-
sequence as well.


For converting the data into numerical format, we 
use one hot encoding, where A-> [1, 0, 0, 0], T-> [0, 
1, 0, 0], G-> [0, 0, 1, 0], C-> [0, 0, 0, 1]. 














B. Training Platform


To train the model, we have used the Amazon EC2 
P2.XLarge instance, providing 16 NVIDIA K80 
GPUs, 64 vCPUs and 732 GB of host memory. We 
are also using Anaconda to do this locally and to 
ship it for easier usage. We use Tensorflow as our 
backend.
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C. Results

We are going to calculate our results in terms of  

the following three: 1. Standard 2. Mean 3. Standard 
Deviation. Standard results will display original 
accuracy for sub-sequence. Mean will imply the  
mean activation score per class over all the 
subsequences and predicts the class with the highest 
mean activation.


We create three different datasets, each 
containing multiple virus genome sequences along 
with the host genome sequencing. The Rotavirus A 
has around f i f ty- thousand subsequences 
corresponding to six viral hosts. Our accuracy is 
81.3%. With Rabies, we got thirteen thousand viral 
sequences corresponding to nineteen host sequences. 
The accuracy for the CNN+LSTM model is 71.98%. 
For Influenza-A virus host we consider 49 classes 
with a possibility of three lac and ten thousand viral 
sequences with an accuracy of 43.54%. We validate 
these results based on different research papers 
quoted in the references section. Here is a sample 
output for Covid-19 genome sequence when fed to 
the model in fasta format displaying the mean exact 
for each given class of host for the given genome 
subsequence. 


Using TensorFlow backend.

None

all hosts

Gallus gallus: 0.24587133526802063

Struthio camelus: 0.18236668407917023

Meleagris gallopavo: 0.13173215091228485

Anas platyrhynchos: 0.11124585568904877

Sus scrofa: 0.0951138511300087

Cairina moschata: 0.08452598750591278

Homo sapiens: 0.07660625129938126

Equus caballus: 0.031874097883701324

Sibirionetta formosa: 0.01936531811952591

Cygnus columbianus: 0.0097846994176507

Canis lupus: 0.003913487307727337

Chroicocephalus ridibundus: 0.0026402573566883802

Anas clypeata: 0.0009738129447214305

Anser fabalis: 0.0009337968658655882

Cygnus cygnus: 0.0006534393178299069

Anser indicus: 0.000434194429544732

Arenaria interpres: 0.000378929398721084

Larus argentatus: 0.0003566846717149019

Anas acuta: 0.00025644132983870804

Anas crecca: 0.0002325345849385485

Anas discors: 0.00020833799499087036

Anas carolinensis: 0.0002021956315729767

Anser albifrons: 0.000160943265655078

Larus glaucescens: 7.02400939189829e-05

Tadorna ferruginea: 3.0653558496851474e-05

Calidris canutus: 2.2140733562991954e-05

Calidris ruficollis: 1.4937109881429933e-05


Cygnus olor: 8.345333299075719e-06

Anas rubripes: 7.90096146374708e-06

Leucophaeus atricilla: 5.888669875275809e-06

Branta canadensis: 3.5206726352043916e-06

Uria aalge: 1.6310566479660338e-06

Mareca strepera: 1.616739950804913e-06

Calidris alba: 9.57596398620808e-07

Mareca penelope: 8.725043016966083e-07

Mareca americana: 3.235087220332389e-08


The AUC (Area under the curve for graph True Positive Rate vs 
False Positive Rate) reached for rotavirus A and rabies is 0.98, please 
see the figure below.


True Positive Rate vs False Positive Rate


Results for two architectures for two viruses.


D. Next Steps

Our Next steps are to improve any anomaly that 

we detect on the results and continue training our 
models. We may need to adapt a variant of Long 
Short Term Memory architecture to see if we are 
getting better results. We also want to try different 
other models to improve the accuracy from an 
average of 65.6% to at the least 80% for all virus 

Methods Virus	
Type

Mean Std.	
Deviatio
n

Standard

LSTM Rotavirus	A 86.7 87.5 85.83

CNN+

LSTM

Rotavirus	A 85 85.83 81.3

LSTM Rabies 74.02 79.21 80

CNN+

LSTM

Rabies 71.98 77.63 77.63
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types. We also want to be able to generate graphs for 
the output representation for various virus types. I 
think to convert this output in some kind of web-app 
is one of the necessary next step. I also want to try 
other IndRNN model type instead of LSTM+CNN 
as the new approach to improve the model accuracy.
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