
	

Predicting The Viral Human-Host Probability Using Deep
Learning Network

  Hina Dixit

Software Engineering 

Apple Inc. 
hdixit@stanford.edu 

Abstract—We want to create a model that will
be able to predict which viruses have higher
human adaption and have an ability into
becoming a pandemic. We will be focusing on
predicting the viral host adaption based on the
viral genome sequence. Such predictions will
help the people to focus on specific viruses to
find more relevant solutions in advance. This
endeavor will be of great value in containing
future outbreaks and save millions of lives. We
will evaluate our results by testing the currently
existing data on Covid-19 and train on viruses
like Rabies, etc. We can have different viruses
(4-5 different datasets) and the subsequent
genome sequences to test against human dna
sequencing.

Keywords—Covid-19 , Corona , Deep
Learning, RNN, CNN, Tensor-flow, LSTM,
RNA, DNA Sequencing.

I. INTRODUCTION (HEADING 1)

In the current era, where Covid-19 has hit the
world as a pandemic, most scholars are attempting
to create different models to help out the humanity
fight with virus and enable our researchers and
medical practitioners to come up with better
solutions and medication for the people who are
affected by the virus. The current stats are
devastating and affecting the economy heavily. If
only, there was a way to predict which viruses have
better human adaption and are highly contagious, we

should be able to advance in finding a vaccination
for those deadly viruses in a timely manner. This
small project is just a try to help with the existing
situation and create a small tool that can be useful in
avoiding such Pandemics in the future. We are going
to take RNA type viruses and predict the human
adaptability of those viruses based on a percentage.
We will consider different viruses like Rabies, Sars,
Covid-19 etc to create a dataset with the respective
nucleotide sequences labeled as per their relative
scientific names. Our goal is to create a model to
predict the probability of human adaptation given a
subsequence of the virus. document and are
identified in italic type, within parentheses,
following the example. We are going to use deep
learning models for this, which include recurrent
neural network, long short term memory and tensor
flow for this project. The end result will be a graph
for different viruses (Names on the X-axis) and the
probability of their adaptation by a human on the Y-
axis.

II. PROPOSED IDEA

A. Method

We can use deep neural network architecture for
solving this problem. We will be using Python,
TensorFlow and Keras as our technical stack. We
can use RNN type (Recurrent Neural Network)
based algorithm ex. Long short-term memory &
CNN (Convolutional neural network) for the same.
We will also need to compress the viral dna

Hina Dixit | hdixit@stanford.edu | CS230: Deep Learning | Project Milestone-1

sequencing information in a compressed format but
ensure to minimize the loss of data. We will often hit
the results which are far from idol, we will need to
re-align these results to ensure the model training is
done correctly.

B. Implementation

i) Previous Method

We collected nucleotide sequencing data from the
European Nucleotide Archive and labeled our set
correctly as advised by NCBI with respective
scientific names. Now for any dataset we are going
to divide it into three types: 1. Training 2. Testing 3.
Validation. Once, we have prepared our input
correctly, our neural network should be enabled to
predict the probability of the host’s ability to adapt
to the viruses. One virus sequence is generated per
host. We will create 1 training set per epoch from the
existing pool of virus sequences for the given host.
This way we are able to randomize our training data
and also use all the sequences. Long Short Term
Memory networks (LSTMs) are kind of RNN,
capable of learning long-term dependencies. They
were introduced by Hochreiter & Schmidhuber
(1997), and were refined and popularized by many
people in the following work. They work
tremendously well on a large variety of problems,
and are now widely used. We will create a
bidirectional LSTM architecture to understand the
context in the dataset consisting of sequences of
nucleotide data labeled in both the directions to be
able to recognize different patterns within our data
that may be useful for us and also enabling
randomization of our data. Bidirectional LSTMs are
supported in Keras via the Bidirectional layer
wrapper which takes a recurrent layer as an
argument. Such networks are useful in sequence
classification problems as well. For forward
propagation , we have forward pass, for the
backward propagation we have backward pass and
lastly the output neurons are passed. After the
forward and backward passes are done, we will be
evaluating the weights.

In general mathematical formulation for LSTM
is:

i(t) = σ(W(i)x(t) + U(i)h(t−1)) (Input Gate)

f(t) = σ(W(f)x(t) +U(f)h(t−1)) (Forget Gate)

o(t)=σ(W(o)x(t) + U(o)h(t−1))

(Output Exposure Gate)

c (̃t) = tanh(W(c)x(t) + U(c)h(t−1))

(New Memory Cell)

c(t) = f (t) ◦ c (̃t−1) + i(t) ◦ c (̃t)

(Final Memory Cell)

h(t) = o(t) ◦ tanh(c(t))

ii) Current Approach

We add CNN network along with the bi-
directional Long Short Term Memory to our
architecture with 150 nodes excluding the layer
pertaining to the output. We also add Keras’ Conv1D
model which creates a convolution kernel that is
convolved with the layer input over a single spatial
(or temporal) dimension to produce a tensor of
outputs. We perform max pooling operation for
temporal data and add the leaky version of a
Rectified Linear Unit. We train each neural network
with an epoch of 500 with equal number of
subsequences. For the given epoch, we validate the
given model using the validation set comparing to
pre-existing known virus-host. When one viral sub-
sequence is entered we get viral-host activation

Hina Dixit | hdixit@stanford.edu | CS230: Deep Learning | Project Report

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf

score for the given host output node and which adds
upto 1, thus we call it the prediction score. So, each
score predicts the probability of viral host prediction
in this case. Now we can divide these predictions to
give final predictions for the given sub-sequence by
either using mean in which we show the mean score
per host out of all the subsequences and predicts the
host with the highest score thus, having the highest
probability of becoming a host to the virus. The
other method is to calculate the standard deviation
for each score calculated and them use them as
weights. We then combine the different predictions
in the last stage.

III. EXPERIMENTAL RESULTS

A. Dataset

We are using virus genome structures for RNA
type viruses (Covid-19, Rabies, etc) available on
Kaggle. The viral genome sequencing is also
available on the National Center for Biotechnology
Information (NCBI)/European Nucleotide Archive
(ENA) database website for free. We can create one
entry of genome sequencing per virus in contact
with a human with a minimum of 50-100 sequences.
For the Dataset, we labeled our hosts and viruses
using scientific names. We calculated the 0.95
quantile of all sequence length in order to create the
partial sequence, by either truncating the sequence
or by padding and converted it into numerical data
to do processing using NumPy. We append the
subsequence in a repetitive manner in order to get
same length subsequence for the inputs in a circular
list fashion. For the datasets, we distributed it in
following way: Training Set: 60%, Validation Set:
20%, Testing Set: 20%. We consider the sequences
as data points and host as a class. We assume that we
are creating unbiased training model as per
subsequences per host. We also assume that we are
limited by the hosts which smallest subsequence of
DNA, which means that for viruses for
subsequences larger than the host’s subsequence, we
will ignore the rest of the viral subsequence to
simplify the problem which will lead to unbalanced
data set causing bias. Instead, we feed randomized
combination of subsequences for each host of same

number per epoch which helps us reduce the bias for
our training sets and we use all available sub-
sequence as well.

For converting the data into numerical format, we
use one hot encoding, where A-> [1, 0, 0, 0], T-> [0,
1, 0, 0], G-> [0, 0, 1, 0], C-> [0, 0, 0, 1].

B. Training Platform

To train the model, we have used the Amazon EC2
P2.XLarge instance, providing 16 NVIDIA K80
GPUs, 64 vCPUs and 732 GB of host memory. We
are also using Anaconda to do this locally and to
ship it for easier usage. We use Tensorflow as our
backend.

Hina Dixit | hdixit@stanford.edu | CS230: Deep Learning | Project Report

Validation

Testing

Training

Class1			Class2				ClassN

Random	Selection

CNN
 BI-
LSTM

RESULT	
COMBINING

OUTPUTINPUT

Dataset	Preparation	Figure

Overall	Architecture	Figure

C. Results

We are going to calculate our results in terms of

the following three: 1. Standard 2. Mean 3. Standard
Deviation. Standard results will display original
accuracy for sub-sequence. Mean will imply the
mean activation score per class over all the
subsequences and predicts the class with the highest
mean activation.

We create three different datasets, each
containing multiple virus genome sequences along
with the host genome sequencing. The Rotavirus A
has around f i f ty- thousand subsequences
corresponding to six viral hosts. Our accuracy is
81.3%. With Rabies, we got thirteen thousand viral
sequences corresponding to nineteen host sequences.
The accuracy for the CNN+LSTM model is 71.98%.
For Influenza-A virus host we consider 49 classes
with a possibility of three lac and ten thousand viral
sequences with an accuracy of 43.54%. We validate
these results based on different research papers
quoted in the references section. Here is a sample
output for Covid-19 genome sequence when fed to
the model in fasta format displaying the mean exact
for each given class of host for the given genome
subsequence.

Using TensorFlow backend.

None

all hosts

Gallus gallus: 0.24587133526802063

Struthio camelus: 0.18236668407917023

Meleagris gallopavo: 0.13173215091228485

Anas platyrhynchos: 0.11124585568904877

Sus scrofa: 0.0951138511300087

Cairina moschata: 0.08452598750591278

Homo sapiens: 0.07660625129938126

Equus caballus: 0.031874097883701324

Sibirionetta formosa: 0.01936531811952591

Cygnus columbianus: 0.0097846994176507

Canis lupus: 0.003913487307727337

Chroicocephalus ridibundus: 0.0026402573566883802

Anas clypeata: 0.0009738129447214305

Anser fabalis: 0.0009337968658655882

Cygnus cygnus: 0.0006534393178299069

Anser indicus: 0.000434194429544732

Arenaria interpres: 0.000378929398721084

Larus argentatus: 0.0003566846717149019

Anas acuta: 0.00025644132983870804

Anas crecca: 0.0002325345849385485

Anas discors: 0.00020833799499087036

Anas carolinensis: 0.0002021956315729767

Anser albifrons: 0.000160943265655078

Larus glaucescens: 7.02400939189829e-05

Tadorna ferruginea: 3.0653558496851474e-05

Calidris canutus: 2.2140733562991954e-05

Calidris ruficollis: 1.4937109881429933e-05

Cygnus olor: 8.345333299075719e-06

Anas rubripes: 7.90096146374708e-06

Leucophaeus atricilla: 5.888669875275809e-06

Branta canadensis: 3.5206726352043916e-06

Uria aalge: 1.6310566479660338e-06

Mareca strepera: 1.616739950804913e-06

Calidris alba: 9.57596398620808e-07

Mareca penelope: 8.725043016966083e-07

Mareca americana: 3.235087220332389e-08

The AUC (Area under the curve for graph True Positive Rate vs
False Positive Rate) reached for rotavirus A and rabies is 0.98, please
see the figure below.

True Positive Rate vs False Positive Rate

Results for two architectures for two viruses.

D. Next Steps

Our Next steps are to improve any anomaly that

we detect on the results and continue training our
models. We may need to adapt a variant of Long
Short Term Memory architecture to see if we are
getting better results. We also want to try different
other models to improve the accuracy from an
average of 65.6% to at the least 80% for all virus

Methods Virus	
Type

Mean Std.	
Deviatio
n

Standard

LSTM Rotavirus	A 86.7 87.5 85.83

CNN+

LSTM

Rotavirus	A 85 85.83 81.3

LSTM Rabies 74.02 79.21 80

CNN+

LSTM

Rabies 71.98 77.63 77.63

Hina Dixit | hdixit@stanford.edu | CS230: Deep Learning | Project Report

0

0.25

0.5

0.75

1

0.0 0.2 0.4 0.6

Macro-Avg	ROC	Curve

types. We also want to be able to generate graphs for
the output representation for various virus types. I
think to convert this output in some kind of web-app
is one of the necessary next step. I also want to try
other IndRNN model type instead of LSTM+CNN
as the new approach to improve the model accuracy.

REFERENCES

1. Jing Li, Sen Zhang, Bo Li, Yi Hu, Xiao-Ping
Kang, Xiao-Yan Wu, Meng-Ting Huang, Yu-
Chang Li, Zhong-Peng Zhao, Cheng-Feng Qin,
Tao Jiang, Machine Learning Methods for
Predicting Human-Adaptive Influenza A Viruses
Based on Viral Nucleotide Compositions,
Molecular Biology and Evolution, Volume 37,
Issue 4, April 2020, Pages 1224–1236

2. https://bedford.io/papers/castro-flu-prediction-
bounds/ Castro LA, Bedford T, Meyers LA.
2019. PLoS Comput Biol 16: e1007683.

3. https://www.kaggle.com/paultimothymooney/
coronavirus-genome-sequence

4. h t tps : / / co lah .g i thub . io /pos t s /2015-08-
Understanding-LSTMs/

5. https://2-bitbio.com/2018/06/one-hot-encode-
dna-sequence-using.html

6. h t t p s : / / w w w. s t a t s d i r e c t . c o m / h e l p /
nonparametric_methods/quantiles.htm

7. V M a r t e l l a , K r i s z t i á n B á n y a i , J e l l e
Matthijnssens, Canio Buonavoglia, and Max
Ciarlet. Zoonotic aspects of rotaviruses.
Veterinary microbiology, 140(3-4):246–255,
2010

8. Christine L P Eng, Joo Chuan Tong, and Tin
Wee Tan. Predicting host tropism of influenza a
virus proteins using random forest. BMC Med
Genomics, 7 Suppl 3:S1, 2014.

9.

Hina Dixit | hdixit@stanford.edu | CS230: Deep Learning | Project Report

https://bedford.io/papers/castro-flu-prediction-bounds/
https://bedford.io/papers/castro-flu-prediction-bounds/
https://www.kaggle.com/paultimothymooney/coronavirus-genome-sequence
https://www.kaggle.com/paultimothymooney/coronavirus-genome-sequence
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://2-bitbio.com/2018/06/one-hot-encode-dna-sequence-using.html
https://2-bitbio.com/2018/06/one-hot-encode-dna-sequence-using.html
https://www.statsdirect.com/help/nonparametric_methods/quantiles.htm
https://www.statsdirect.com/help/nonparametric_methods/quantiles.htm

	Introduction (Heading 1)
	Proposed Idea
	Method
	Implementation

	Experimental Results
	Dataset
	Training Platform
	Results
	Next Steps
	References

