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Abstract

Freedom of speech on the Internet has also led to a pervasive presence of toxic
comments in online discussions and a need to detect their presence in any language.
While previous work focused on classification models for English input or other
pre-defined language input, we investigate whether English-trained toxic comment
classification models can be language agnostic. We trained 6 models on English
inputs and validated against non-English inputs. We found that models do not
perform exceptionally well non-English inputs, but the mislabeling errors was not
evenly distributed across languages. This is likely due to degree of similarities
between each of the non-English language and English. Based on the model
performance, we conclude that existing English-only trained and non-English
validated toxic classification models likely will not perform well on non-English
inputs.

1 Introduction

Freedom of speech on the Internet has also led to a pervasive presence of toxic comments in online
discussions. A toxic comment is defined as a rude, disrespectful, or unreasonable comment that is
likely to make other users leave a discussion [8]. Toxic comment detection will facilitate and maintain
the openness of the online community. Furthermore, a language-agnostic detection model will be
vastly more effective towards moderating all aspects of the Internet.

2 Previous Work

Previous work come in two-fold: toxicity text classification and multilingual classification. The
english-only training data set in this problem has been studied by Aken et. al [1], wherein they
applied an ensemble of logistic regression, LSTM RNN, GRU RNN, and CNN to classify toxicity.
Most approaches to multilingual text classification involves some form of machine translation from
source language in which the model is trained on to a target language[ 0] [7] [5]. Exploration on the
combined topic of multilingual toxic text classification has been limited.

3 Dataset and Features

Our training and validation data sets are provided by the Multilingual Toxic Comment Classification
Kaggle Challenge, sponsored by Jigsaw. For the baseline model, we used a training set contains
223549 samples, with the input being a English text comment string, and the labels being toxicity
(binary). 21384 or 9.4% of the samples are labelled toxic (Fig. 1, left).

validation data set contains 8000 samples, with the input being a non-English text comment string,
and the label being a binary toxicity label. 1230 or 15.4% of the samples are labelled toxic (Fig. 1,
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Figure 1: Left: Training sample distribution out of 223549 samples. Right: Validation sample
distribution our of 8000 samples.

right). The raw data set also included language of origin for each sample (Appendix Fig. 5) for data
analysis. However, as the model is meant to be language-agnostic, we did not include the provided
language of origin in our input.

The input text of the training and validation data samples are encoded as feature vectors with max
length 512 using the DistilBERT [ 1] multilingual cased tokenizer. This is a first pass choice for
encoding, and we may explore other methods of encoding as next steps. We chose DistilBERT
because one of our next steps is to fine-tune a pre-trained multilingual DistilBERT[3] model, and
DistilBERT is meant to be "smaller, faster, cheaper and lighter". The training samples are shuffled
and grouped into batches of 32.

4 Method and Experiment

We have experimented with six different models, all of which are described in Table 1. Note that
model S is the baseline model from milestone 1. The foundation model framework is a bidirectional
LSTM structure shown below.We chose to have this bidirectional LSTM structure because it is a
well-established text classification model [9] [2]. It is the basic model used in IMDB reviews sentient
classification in Tensorflow demos.

1. Embedding layer

(a) From scratch
(b) DistilBERT pre-trained weights

2. Bidirectional LSTM layer
(a) Number of LSTM layers varied between 1, 2, and 4.
3. Self-Attention layer

(a) Without Self-Attention layer
(b) With Self-Attention layer

4. ReLU activation layer
5. Sigmoid activation layer (output)

With this foundation model structure, we iterated on multiple models by varying three aspects. The
first aspect is whether to train the embedding layer from scratch or with pre-trained weights, so to
leverage transfer learning.

The second aspect is whether to include self-attention layer after LSTM layer. Inclusion of attention
layer to build context-aware models have been shown to improve toxic comment classification [4].

Finally, the third aspect is the number of LSTM layers, which varied between 1, 2, and 4. We
investigated this aspect because of inspiration from approaches to Neural Machine Translation
encoder.Given that we would like to perform classification on multiple languages, our task can
be considered a classification after the NMT encoding layer. As mentioned in Google’s NMT



description [12], deeper LSTM encoding and decoding layers (up to 8 layers) better captures the
subtle irregularities from in source and target languages. Given the time and resource constraints, we
chose to investigate model P, which was the best performing model of the first 4 models in Table 1,
with 2 and 4 LSTM layers.

Notation Description
S Trained from scratch, no attention
SA Trained from scratch, with attention
P pre-trained, no attention
PA pre-trained, with attention
Py pre-trained, no attention, 2 LSTM layers
Py pre-trained, no attention, 4 LSTM layers

Table 1: Model notations and descriptions.

We computed loss with binary cross entropy and optimized with Adam optimizer [6].
1N
L(0) = N > wilog (p(y:) + (1 —yi) log (1 — p (1))
i=1

We implemented the model on Google Colab (Github) without using TPUs. We trained on batches
of 32 samples, with the initial learning rate of 0.001. We trained with programmatic learning rate
adjustment on loss plateaus using tensorflow.keras.callbacks.ReduceLROnPlateau. For
models S, SA, P, PA, we trained for 10 epochs. For models P», P,, we trained for 20 epochs
because they are more complex models.

5 Results

We first evaluated the models S, S A, P, P A before choosing to increase model complexity on the best
performing model (based on ROC-AUC score). Over 10 epochs, we observed that training accuracy
was gradually increasing for all models. However, validation accuracy was pretty much stagnant or
decreasing for all models, with the highest of 0.8499 (Fig. 2, top left, middle left). Similarly, training
loss was pretty steadily decreasing while validation loss was stagnant or increasing (Fig. 2, top right,
middle right). We chose to calculate the ROC-AUC score for performance comparison, and was able
to see a steady increase in all models except P A (Fig. 3, left).

We then evaluated the models P, and P,. These models were trained over 20 epochs instead of 10
epochs to account for the increase in model complexity. We observed a trend of increasing training
accuracy and decreasing validation accuracy over time, similar to previous models (Fig. 2, bottom
left). However, because of the longer training session, we were able to observe that the validation
accuracies was unstable until epoch 14, at which point they began to around 50-60%. We also observe
that ROC-AUC score for both models was increasing over training and plateaued around epoch 14
(Fig. 3, right).

6 Analysis

A worse performance with validation was not entirely unexpected because of the linguistic difference
in data. We expected models with pre-trained multilingual DistilBERT embedding weights will
perform better in terms of accuracy because it will be more language agnostic, but for the most part,
models P and P A performed on par with model .S and S A. Model P did perform better in terms of
ROC-AUC score than all other models.

Through error analysis, we confirmed that the 84% validation accuracy at initial epochs for almost
all models are the result of predicting all validation samples as non-toxic. This explains why some
models’ validation performance stayed stagnant - their learned features did not translate across
languages. For the models that do show changes in validation performances over time, it is interesting
to observe the difference in how the performance changed. For models P, SA, P», and Py, there was
a sudden drop in validation validation to <65%, followed by a sudden increase. It looks as if the
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Figure 2: Top and middle left: Training and validation accuracies of models S, S A, P, and PA over
10 epochs. Top and middle right: Training and validation losses of models .S, SA, P, and PA over
10 epochs. Bottom left: Training and validation accuracies of models P, and P, over 20 epochs.
Bottom right: Training and validation losses of models P, and P, over 20 epochs.
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Figure 3: Left: ROC-AUC score for validation of models S, SA, P, and P A over 10 epochs. Right:
ROC-AUC score for validation of models P, and P, over 20 epochs.



models are stabilizing after an initial disturbance. In contrast, the baseline model S was noticeably
changing in validation performance but did not have the sudden drop in performance. Pre-trained
model P validation performance was stagnant throughout training. It would be interesting to examine
in the future why some models experience some sort of jolt-and-stabilization in the training process,
while others don’t.

When we trained P, and P, for longer epochs, we observed that the ROC-AUC score plateaued
around the same time as the stabilization in validation accuracies and losses. We wonder if this is a
sign that these models needs finetuning at a different hyperparameter spectrum than what we have
currently examined.

We also looked specifically at the validation predictions for P, and P, and found the distribution
of mislabeled samples across languages is uneven (Fig. 4). Specifically, there is a low number
of mislabeling of Spanish samples and a high number of mislabeling of Turkish samples. This is
likely due to the degree of similarity between English and Spanish. In contrast, Turkish samples are
probably highly mislabeled because of its lack of similarity to English.
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Figure 4: Mislabeled P, and P, validation output by language.

7 Conclusion and Future Work

Based on the performances of the six models, we conclude that it is unlikely that toxic comment
classification models trained on English inputs and validated on non-English inputs will perform
well on non-English inputs. However, we would like to investigate whether including English inputs
in the validation data set would impact the model learning. We are also curious why models with
pre-trained encoding weights have a dramatic dip in validation performance before sta. Lastly, while
there does not exist an open-sourced pre-trained multilingual NMT yet, but should it be available in
the future, we would like to investigate the performance of multilingual toxic comment classification
models that uses pre-trained encoder weights of a multilingual NMT.

8 Contribution

Lynn Kong worked on the entirety of this project.
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9 Appendix

Validation Sample Distribution By Language
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Figure 5: Validation sample distribution by tagged language of origin out of 8000 samples.
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