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Problem Statement

The quality and appearance of an image is largely dependent on lighting. The complex interplay
of objects and light (type of light, directions, etc) is central to the appearance of objects, thereby
impacting the quality and realistic appearance of an image. Thus, when photoshop artists or VFX
artists want to embed an object from one image into another, lighting effects (including reflectivity,
shading, etc) often becomes an issue. As such, just cropping the object itself is not enough to make
this new image appear realistic. This tool attemps to remove the additional work that many visual
effect artists and photo editors have to put in to combine images with different lighting. The intended
outcome is a generative model that properly applies the lighting in a surrounding image to our object.
To capture a wide range of lighting, we discretize the lighting to 25 different directions.

Related Work

The problem of changing lighting effects has been explored by many others in recent years, though
there are not many that have tackled our specific problem of indoor lighting effects of various
images. Conceptually, in 2003, Hara, Noshino, and Ikeuchi researched various techniques to recover
reflectance properties of real surfaces under unknown illumination conditions [2]. Though they did
not work specifically on style transfer, they proposed methods to estimate the surface reflectance
property of an object, as well as the position of a light source from a single image.

More recently, many researchers have tackled variations of the lighting problem like flash effects.
They have created models that take images with flash and output an identical image without the flash
effects [1][8]. However, these models do not cover a wide range of indoor lighting by only focusing
on flashed lighting.

Neural Style Transfer

Hold-Geoffroy et al. have attempted to transfer various outdoor lighting onto a content image [6].
Specifically, they used a CNN-based technique to estimate high dynamic range outdoor illumination,
training their model with outdoor panoramas and sky images and parameters (including sun position,
atmospheric conditions, and camera parameters). This research varies from ours due to the differnece
in scenes (indoor vs outdoor) and the different aspects of lighting effects that need to be accounted
for in the different scenes.
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Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have been used widely in producing realistic images, where
image generation occurs as a zero-sum game between a generator neural network and discriminator
nerual network [5]. Specifically, StyleGan has been used to produce and customize some of the
most realistic faces from a generative model to date. Unlike regular GANs, StyleGAN starts at a
learned constant and continuously adds in “style” at multiple points during the generation process
[6]. Repeatedly injecting the style vector into the network results in the style vector having a greater
impact on the final image. On the other hand, CycleGAN uses cycle-consistency loss to enable
training without paired images, ultimately trying to have a model minimize reconstruction loss [10].

Dataset

We used a dataset developed by researchers at MIT: "A Dataset of Multi-Illumination Images in
the Wild" [7]. This dataset consists of 1016 real interior scenes, each captured under 25 lighting
conditions using indirect illumination and an electronic flash mounted on servo motors to control
direction. Each image is 1500x1000 px. We scaled each image down during training to 256x256 px.

We are mainly focused on the transfer of lighting effects of images of objects rather than people
(where aspects like skin tone become important), so this dataset matches our needs as all images
are those of objects/indoor scenes. In particular, the dataset spans 95 different rooms throughout 12
residential and office buildings, thereby capturing a variety of materials and room shapes. As such, it
is representative of many real world scenes.

This dataset also includes segmentation for analysis of materials, though we disregard these sections
since we mainly focus on the differences in lighting directions and effects (ex. flash, no flash).

Methods

We try a modified LSGAN and a modified CNN UNet architecture so we can learn lighting effects
that result from each of the 25 lighting directions and can also generate new images with the lighting
direction desired.

The GAN model architecture is comprised of a generator and a discriminator model:

1. G for generating images for the first domain. It is conditioned on the input image and the
target lighting.

2. D: Discriminates Ggen from real data. It is conditioned in an input image and a matching
lighting.

The generator utilizes average pooling for downsampling, and pixel shuffling for upsampling. In
addition, we implement skip connections as in UNET.

We train the generator using Adam optimization with mean squared error, lr = 0.0001, β1 =
0.5, β2 = 0.999, ε = 1e − 07). We train the discriminators using Adam optimization with mean
squared error, lr = 0.0003, β1 = 0.5, β2 = 0.999, ε = 1e−07). Note the difference in learning rates,
we implemented TTUR. In addition, we implemented label smoothing and noisy labels: making
labels 0.1 and 0.9 instead of 0 and 1, and flipping labels fed to the discriminator with probability 0.05.
Our batch size was 20, and we utilized BatchNorm.

The CNN model architecture is comprised of a modified UNET architecture. It is a similar architecture
to our GAN generator, except it utilizes maxpooling instead of average pooling.

Loss Function

For the GAN, our discriminator is trained directly on real and generated images. For the discriminator,
we use a L2 loss (mean-squared error).

Ladv(G,D,A) =
1
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For the CNN, we use a L1 loss (mean-absolute error) since we found it to be more stable in the long
run that way.

L(Mod, In, tar) =
1

m

m∑
i=1

‖Mod(In)− tar‖

Other Architectures explored

We explored using neural style transfer, and a cycle GAN model. The cycleGAN model was too
cumbersome and did not fit our problem formulation well. The neural style transfer was ill suited to
our problem as well.

Hyperparameter Tuning

Most of our hyper-parameter tuning had to do with our GAN and CNN. For training our GAN, we
often ran into mode collapse or diminished gradient and found that our model’s stability was very
sensitive to minor changes in our hyperparameters. As such, we tried to balance the generator and
discriminator by monitoring the losses and sample generated images. In particular, we focused on
fine-tuning the learning rate of the generators/discriminators, batch size, and latent dimensions of our
discriminators and generators, etc.

GAN Hyperparemeters Value
Number of Epochs 400
Batch Size 20
Discriminator Learning Rate 0.0003
Generator Learning Rate 0.0001
Discriminator Latent Dimension 200
Generator Latent Dimension 300
Discriminator Optimizer Adam
Generator Optimizer Adam

For our CNN, we focused on stabilizing our loss function and balancing run time and accuracy.

CNN Hyperparemeters Value
Number of Epochs 400
Batch Size 20
Learning Rate 0.0002
Latent Dimension 200
Optimizer Adam

See our code for the full list of all the hyperparameters for the different training models.
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Figure 1: Comparison of real vs generated images of 5 of the 25 lighting directions for our CNN.

Figure 2: L1 losses for our CNN

Results

Unfortunately, we could not get our GAN training to both stabilize and produce satisfactory results.
When the GAN did stabilize, it entered mode collapse and just outputted the input image. Thus, the
results here are focused on the that obtained from the CNN (lighting probe model). Our model was
definitely converging, as seen through the overall decreasing losses in figure 2.

In terms of the images more specifically, our model seems to work well in transferring diffuse light.
We can see how the lighting directions changing effects the objects generally brightness in all of
the images. It is also relatively successful in transferring flash effects as see through direction 3 in
the first image and direction 2 in the second image. Moreover, it does not over-expose the image
significantly more than the original.
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However, we notice that the specular highlights do not transfer well, such as reflectance. For example,
when we look at the bottles in the first image with lighting direction 4, we can see that while the
original image’s bottles do not reflect light (glass and plastic bottles) the generated images’ do. For
direction 1 of the first image, we also see that the reflection of light for the glass and plastic bottle
exist for both the generated and real images. However, the directions do not correspond correctly.
The original image evidently has light coming in from the right (and thus reflecting in that direction)
while the generated image simulates lighting from the left where the specular highlights on the
bottles appear on the left side.

Conclusion/Future Work

To summarize, our CNN performs well in capturing general diffuse lighting and flashed effects but
fails to perform well with specular highlights. This is likely due to the lighting properties of different
objects, which we did not train on or really take account of. In short, we underestimated the impact
that a material’s object would have on its appearance under different lighting conditions. As such, in
future work, we should definitely incorporate image segmentation based on material to be able to
capture more complex lighting properties like reflectance/specular highlights.

Moreover, in future works, we would spend more time to train our GAN such that it is more stable
across the various iterations/epochs. In particular, we would design it such that it does not run into
Mode Collapse.
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