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Abstract 

 

In this paper, we attempt sentence compression by using 

extractive text summarization. By formulating the task as a 

multi-label deletion-based problem, we are thus able to 

train a deep learning model to solve this task. With fewer 

training examples, we achieve similar F1-Scores to past 

papers and can generate summaries which are mostly 

grammatically coherent and usable. A POC of the model 

was used on a proprietary dataset owned by the author’s 

workplace with similar results. 

 

1. Introduction 

In this era where the amount of textual data is growing at 

an exponential rate, it is increasingly important to develop 

ways to efficiently process and derive insights from such 

data. As it is tedious and difficult for humans to extract key 

points from large volumes of text, automatic text 

summarization is necessary for reducing the overall time 

spent on processing textual data. Text summarization aims 

to shorten long pieces of text, creating a coherent and fluent 

summary highlighting only the main points of the text. 

Traditionally there are two approaches to the problem:  

1) Extractive text summarization involves pulling 

key words or phrases from the source text and 

combining them to make a summary 

2) Abstractive text summarization involves 

paraphrasing and shortening parts of the source 

document to generate a summary 

In this paper, extractive, instead of abstractive, text 

summarization is used, as it is difficult to programmatically 

evaluate an abstractive summary due to the lack of a 

constraint on the type of vocabulary and phrases able to be 

used. Previous methods to conduct extractive text 

summarization include creating a summary with words with 

the highest TFIDF scores, and the TextRank algorithm, 

which extracts sentences most representative of the text 

based on similarity scores between sentences.  

We instead take a different approach, training a sentence 

compression based textual summarizer using deep learning 

techniques. This thus takes the form of a multi-label 

deletion-based task, where the model picks which words to 

keep from the original text, while aiming to preserve the 

grammatical coherence and important content of the 

original text. Summaries generated with our method are 

thus naturally a subsequence of the original text. 

The project outlined in this paper was initiated with the 

intention of applying a POC to be used in the author’s 

workplace for processing textual documents. 

2. Related works 

In the sentence compression literature, many approaches 

rely on the presence of additional synthetic information for 

sentences as inputs. This is done to minimize chances of 

introducing grammatical mistakes in the output. [4]. For 

example, Filippova & Altun [1] rely on the pruning of 

dependency trees, and Zhao & Aizawa [2] use part-of-

speech tags and word dependency relations as features in a 

reinforcement learning framework. The most recent work 

in this area by Kamigaito & Okumura [3] uses additional 

language model features alongside parent-child word 

relationships for sentence compression, achieving the 

current state of the art F1 score of 0.855 on the Google 

sentence compression dataset. Such methods, however, 

require said synthetic information for model training, which 

requires either be manual tagging by humans or generation 

with a separate model. Additionally, systems depending on 

such synthetic information are vulnerable to error 

propagation should there be errors in the generation of said 

information.   

As an alternative, Filippova et al. [4] proposed a 

compression model using only tokens, without access to 

other linguistic information, using LSTMs to output 

summaries. Apart from the data available in the Google 

sentence compression dataset, Filippova et al generate an 

additional 2 million sentence compression pairs and use 3 

layers of unidirectional LSTMs to achieve an F1 score of 

0.80. This approach by Filippova et al does not require 

additional synthetic information like POS tags in the 

training data. In this paper, we attempt to use a similar 

method to Filippova et al. [4], using a purely token based 

approach to achieve sentence compression on the Google 

sentence compression dataset introduced by Filippova & 

Altun [1]. 
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3. Dataset and Features 

We use the Google dataset produced by Filippova & 

Altun [1] for pretraining the model. This dataset contains 

210,000 examples of sentence compression pairs based on 

online news articles. Data is publicly available at 

https://github.com/google-research-datasets/sentence-

compression/tree/master/data. 

 

Figure 1 displays an example sentence compression pair 

from the Google dataset. All word summaries constructed 

in this dataset consist of words present in the original 

sentence, arranged in the word order of the original 

sentence. This allows for the model training task to generate 

purely extractive summaries, where compression is a 

subsequence from the original sentence. 

Figures 2 and 3 describe the frequency of the original 

sentences and associated summaries, respectively. 210,000 

original sentences with an average word length of 29.7 are 

paired to associated summaries with average word length 

of 10.7. The average compression rate (Number of words 

reduced divided by original sentence length) of this dataset 

is 60.47%. 

 

While the dataset also includes additional features such 

as POS tags of individual words, we do not use any 

additional information apart from the actual text and 

associated summary. 

3.1. Encoding of input text 

To encode individual words of sentences into a machine-

readable format for training in our baseline models, we 

convert each word in the original sentence into 300-

dimension GloVe embeddings [6]. The pretrained GloVe 

embeddings map words into a vector space with meaningful 

linear substructures, providing better word representations 

based on word co-occurrences. As the available training 

data (210,000 examples) in the Google dataset is small in 

comparison to the dataset used by Filippova et al (2 million 

examples), we use the GloVe embeddings to supplement 

additional semantic information for words in the inputs to 

our baseline models. For similar reasons, we use the 

embedding layer of a pre-trained language model for our 

final model. 

3.2. Preparation of labels 

To prepare labels for our models, we generate a one-hot 

encoded [Equation 1] vector the length of each original 

sentence N for each sentence compression pair. 

 

 

 

Each element of the one-hot vector is a binary indicator 

for the nth word of a sentence 𝑤𝑛 , with true values 

signifying the presence of the word in a sentences’ 

summary (𝑨). 

To ensure comparability of model results with previous 

works, we use the first 10,000 sentence compression pairs 

as our testing set, and the remaining 200,000 pairs for 

training our models. 

4. Methods 

Figure 4 displays the general model architecture used for 

all models in this paper. The general model architecture 

comprises 3 parts: (i) the embedding layer, (ii) the model 

hidden layers, and (iii) the sigmoid output layer.  

 

Individual words from each original sentence are 

tokenized and fed into the embedding layer at either word 

or wordpiece levels. The embedding layer then creates 

vector representations of these inputs, which are then fed 

into the model hidden layers, which differ depending on the 

Figure 1: Example of sentence compression pair present in 

Google dataset 

Figure 2: Histogram of original sentence lengths 

Figure 3: Histogram of summary sentence lengths 
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model used. Finally, a sigmoid layer generates an output 

score between 0 and 1, used to determine if an individual 

word should be kept in the sentence summary. Each word 

of the sentence will have a corresponding output from the 

sigmoid layer. The sentence compression problem is thus 

formulated as a multi-label classification task, where each 

individual input token is classified into being kept or not. 

4.1. The Baseline Model 

Our Baseline Model uses GloVe embeddings in the 

Embedding Layer to encode our input text. We then add a 

single LSTM layer, a max pooling layer and a feed forward 

layer to make up the Model Hidden Layers. The structure 

of the LSTM layer helps to model both long- and short-term 

dependencies amongst words in a sentence. It does this by 

holding an internal “cell state” which is updated as words 

of a sentence are fed into the layer. Each “cell” of the LSTM 

layer consumes the output “hidden state” and “cell state” of 

each previous cell alongside each new word, and 

determines a new “hidden state” and “cell state” using 

input, forget, and output gates. 

Equation 3 dictates the formula for the LSTM layer, 

where 𝑡  is each subsequent word in a sentence 

(representing the “time step”), 𝒉𝒕 is the layer’s hidden state 

at 𝑡, 𝒄𝒕 is the cell state at 𝑡, 𝒉𝒕−𝟏 is the layer’s hidden state 

at 𝑡-1 or an initialized hidden state at time 0, 𝒊𝒕 is the input 

gate, which determines how to update the cell state based 

on the new information, 𝒇𝒕  is the forget gate, which 

determines what information to remove from the previous 

hidden state and current input, and 𝒐𝒕  is the output gate, 

which together with the cell state determines the next 

hidden state. 𝜎 is the sigmoid function, and ⊙  is the 

element-wise product of two matrices. 

4.2. The Bi-LSTM Model 

The second model we use is like the baseline model in 

using GloVe embeddings in the Embedding Layer. 

However, we now use a 2-layer bi-directional LSTM to 

feed into a max pooling and feed forward layer for our 

Model Hidden Layers. Bi-directional LSTMs work 

similarly to the regular LSTM used in the Baseline Model. 

However, while a regular LSTM only parses a sentences’ 

words from beginning to end, bi-directional LSTMs also 

parse words from end to beginning. This is advantageous as 

the internal cell states of the bi-directional LSTM can now 

preserve information from both before and after a certain 

sentences’ word, allowing for a better representation of 

sentence context.  

4.3. The Pre-Trained BERT Model 

While we first train a model from scratch in the Baseline 

and Bi-LSTM models, we instead tap upon pre-trained 

language models in our final model. Specifically, we use 

the pre-trained BERT language representation model for 

fine tuning and transfer learning on our dataset [5]. The 

BERT model is pre-trained on 2 tasks: (i) Masked 

Language Modeling (predicting the value of randomly 

masked words in the input sentence, and (ii) Next Sentence 

Prediction (given a pair of 2 sentences, determine if the 

second sentence follows after the first in the original text 

document) [5]. The two tasks, trained over the 

BooksCorpus (800M words) and English Wikipedia 

(2500M words), allow the final model to contain rich 

semantic information on the English language. On its 

release, the BERT model obtained state-of-the-art results in 

11 natural language processing tasks [5]. 

 

In our final model, we no longer use GloVe embeddings 

in our Embedding layer, and instead use the pre-trained 

Embedding layer from BERT. This differs from previous 

models as BERT’s embedding layer uses WordPiece 

embeddings instead of words and encodes each wordpiece 

into a 768-dimensional vector [5]. 

 

In our Model Hidden Layers, our BERT implementation 

stacks 12 separate groups of layers, with each group 

containing a self-attention layer feeding into 3 feed forward 

layers, alongside normalization and dropout layers after the 

1st and 3rd feed forward layers. Each self-attention layer 

generates a 768-dimensional representation for each 

wordpiece in a sentence based on specific wordpiece 

representations in the previous layer. This essentially 

creates a weighted representation of each wordpiece in a 

sentence based on the various wordpiece representations of 

the previous layer. All model parameters for the Embedding 

Figure 4: General Model Architecture 
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and Model Hidden Layers are pre-loaded with weights from 

the base-uncased version of the BERT model. 

4.4. Loss Function and optimizer 

All models are trained to minimize the Binary Cross 

Entropy loss function [Equation 2] across all output scores 

in a sentence, for all sentences in the training data.  

 
 The implementation of the Binary Cross Entropy 

function in Equation 2 compares the sigmoid outputs 𝑥𝑛 

with the corresponding binary labels 𝒴𝑛  and is lower the 

closer 𝒙𝒏 is to 1 when 𝒴𝑛 is 1.  

 

The Adam optimizer [7] takes into account momentum 

and the RMSProp algorithm to accelerate learning speed 

and is used for all models in this paper.  

4.5. Padding of sentences 

To standardize the inputs of the sentences in our 

models, we pad our original sentences to a length of 150 

words per sentence. Original sentences with over 150 

words are truncated at the end. Wordpiece lengths are 

padded or truncated to a length of 200 respectively. 

5. Results and discussion 

Various hyperparameter choices were explored in the 

training of the models. A grid search was first used to test 

learning rates from 0.1 to 1 x 10-6 . Eventually, 

implementing an optimizer learning rate scheduler which 

decreases the learning rate from 3 x 10-5 , according the 

cosine function, with 3 hard restarts was used due to 

superior results on the validation set. 

The maximum batch size allowed by available GPU 

memory was used, for quicker model training time and 

faster iterations. This resulted in a batch size of 128 for 

Baseline and Bi-LSTM models, and 16 for the BERT pre-

trained model.  

The number of epochs each model was trained was 

determined by visually inspecting a plot of the training and 

validation loss. Optimal epochs were chosen at where 

validation loss started to plateau or diverge from the 

decrease in training loss. This is to avoid overfitting to the 

training set. Other methods used to avoid overfitting were 

addition of dropout to the LSTM and BERT models. 

Table 1 displays the results of the 3 models alongside the 

score of randomly initialized labels for comparison. It can 

be seen that even the baseline model provides a significant 

performance boost in comparison to randomly choosing 

words to keep in the summary. However, the baseline 

model is only able to achieve an F1 score of 0.585.  

The Bi-LSTM model presents a performance gain over 

the Baseline model with a F1 score of 0.604. However, 

these low F1 scores result in poor-quality predicted 

summaries. Visual analysis of the predicted summaries 

show that not only do both the Baseline and Bi-LSTM 

model not produce grammatically coherent sentences, they 

also are prone to several types of errors (See Appendix A 

for a selection of examples from the test set displaying 

various types of errors). 

The first error prevalent in these models are that 

predicted summaries do not end in grammatically coherent 

ways. Table 2 shows an example of this, where the Bi-

LSTM prediction ends with an adjective without an 

associated noun. 

Table 1: Model Results 
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Predictions generated by the Baseline and Bi-LSTM 

models also tend to do poorly on sentences with summaries 

not consisting of earlier words in the sentence. Table 3 

shows an example of a sentence compression pair with this 

characteristic, where earlier words in the sentence are not 

relevant to the summary. 

Finally, the Baseline and Bi-LSTM models are unable to 

report numbers properly. Table 4 demonstrates an example 

where numbers are dropped from the summary entirely. 

Various architectural choices were explored to improve 

model performance. However, both increasing the number 

of layers and increasing the size of each layer resulted in the 

training loss plateauing beyond the first epoch. While 

previous authors have proven that having more data would 

improve performance [4], it was also difficult to obtain 

more data for training, given the lack of publicly available 

alternatives 

The BERT pre-trained language model was thus used to 

combat these issues with the earlier models and lack of 

training data. BERT was chosen in order to harness the 

semantic information gained in it’s pretraining to our 

sentence compression task. As seen in the Tables 2-4, the 

model based on Fine-Tuning BERT is able to produce more 

grammatically coherent sentences while avoiding the 

previously identified pitfalls. 

Figure 5 displays the word-level Confusion Matrix 

showing the actual labels vs predicted outputs of the BERT 

Model. It can be seen from Tables 2-4 that while the BERT 

model is unable to fully predict the original summary, its 

predictions are mostly grammatically coherent and usable. 

The F1-Score for the BERT model is 0.821, similar to the 

results of Filippova et al. [4]. However, Filippova et al. [4] 

use an additional 2 million sentence compression pairs, 

while we are able to achieve the same results with a much 

smaller dataset of 200,000 examples. 

6. Conclusion 

In this paper, we attempt sentence compression by using 

extractive text summarization. By formulating the task as a 

multi-label deletion-based problem, we are thus able to 

train a deep learning model to solve this problem. While 

much of the previous literature and current state of the art 

models rely on having additional synthetic information as 

inputs, we instead fine-tune a model with text as the only 

training data, without additional linguistic information.  

While models trained from scratch did not perform well 

on the dataset, using the pre-trained BERT language model 

for fine tuning produced the best results. With fewer 

training examples, we achieve similar F1-Scores to past 

papers like Filippova et al. [4] and can generate sentences 

which are mostly grammatically coherent and usable as 

summaries.  

With further work, results can still be improved. 

Filippova et al. [4] have shown that having a bigger set of 

training data would better improve model performance. 

Additionally, recent advancements in the Natural language 

Processing Community have resulted in more advanced 

models than BERT with improved results. 

Finally, while not covered in this paper due to 

confidentiality purposes, the model was deployed to an 

additional 592 paragraphs of a proprietary dataset 

containing economic reports owned by the author’s 

workplace, with good results (0.782 F1 Score, attributable 

to differences in the domain of the datasets). Going 

forward, we will be implementing this model in the 

workplace to distil various articles for easy consumption.  

Table 2: Example where Bi-LSTM is unable to end summary well 

Table 3: Example where earlier words are not used in summary 

Table 4: Example where numbers are needed in summary 

Figure 5: Confusion matrix for BERT model 
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7. Results and discussion 

All steps involved in this project were conducted by 

Lum Yao Jun only.  
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Appendix A: Sample Predictions  


