

1

Abstract

In this paper, we attempt sentence compression by using

extractive text summarization. By formulating the task as a

multi-label deletion-based problem, we are thus able to

train a deep learning model to solve this task. With fewer

training examples, we achieve similar F1-Scores to past

papers and can generate summaries which are mostly

grammatically coherent and usable. A POC of the model

was used on a proprietary dataset owned by the author’s

workplace with similar results.

1. Introduction

In this era where the amount of textual data is growing at

an exponential rate, it is increasingly important to develop

ways to efficiently process and derive insights from such

data. As it is tedious and difficult for humans to extract key

points from large volumes of text, automatic text

summarization is necessary for reducing the overall time

spent on processing textual data. Text summarization aims

to shorten long pieces of text, creating a coherent and fluent

summary highlighting only the main points of the text.

Traditionally there are two approaches to the problem:

1) Extractive text summarization involves pulling

key words or phrases from the source text and

combining them to make a summary

2) Abstractive text summarization involves

paraphrasing and shortening parts of the source

document to generate a summary

In this paper, extractive, instead of abstractive, text

summarization is used, as it is difficult to programmatically

evaluate an abstractive summary due to the lack of a

constraint on the type of vocabulary and phrases able to be

used. Previous methods to conduct extractive text

summarization include creating a summary with words with

the highest TFIDF scores, and the TextRank algorithm,

which extracts sentences most representative of the text

based on similarity scores between sentences.

We instead take a different approach, training a sentence

compression based textual summarizer using deep learning

techniques. This thus takes the form of a multi-label

deletion-based task, where the model picks which words to

keep from the original text, while aiming to preserve the

grammatical coherence and important content of the

original text. Summaries generated with our method are

thus naturally a subsequence of the original text.

The project outlined in this paper was initiated with the

intention of applying a POC to be used in the author’s

workplace for processing textual documents.

2. Related works

In the sentence compression literature, many approaches

rely on the presence of additional synthetic information for

sentences as inputs. This is done to minimize chances of

introducing grammatical mistakes in the output. [4]. For

example, Filippova & Altun [1] rely on the pruning of

dependency trees, and Zhao & Aizawa [2] use part-of-

speech tags and word dependency relations as features in a

reinforcement learning framework. The most recent work

in this area by Kamigaito & Okumura [3] uses additional

language model features alongside parent-child word

relationships for sentence compression, achieving the

current state of the art F1 score of 0.855 on the Google

sentence compression dataset. Such methods, however,

require said synthetic information for model training, which

requires either be manual tagging by humans or generation

with a separate model. Additionally, systems depending on

such synthetic information are vulnerable to error

propagation should there be errors in the generation of said

information.

As an alternative, Filippova et al. [4] proposed a

compression model using only tokens, without access to

other linguistic information, using LSTMs to output

summaries. Apart from the data available in the Google

sentence compression dataset, Filippova et al generate an

additional 2 million sentence compression pairs and use 3

layers of unidirectional LSTMs to achieve an F1 score of

0.80. This approach by Filippova et al does not require

additional synthetic information like POS tags in the

training data. In this paper, we attempt to use a similar

method to Filippova et al. [4], using a purely token based

approach to achieve sentence compression on the Google

sentence compression dataset introduced by Filippova &

Altun [1].

Sentence Compression for Text Summarization

(Natural Language Processing)

Lum Yao Jun
lumyaojun@gmail.com

2

3. Dataset and Features

We use the Google dataset produced by Filippova &

Altun [1] for pretraining the model. This dataset contains

210,000 examples of sentence compression pairs based on

online news articles. Data is publicly available at

https://github.com/google-research-datasets/sentence-

compression/tree/master/data.

Figure 1 displays an example sentence compression pair

from the Google dataset. All word summaries constructed

in this dataset consist of words present in the original

sentence, arranged in the word order of the original

sentence. This allows for the model training task to generate

purely extractive summaries, where compression is a

subsequence from the original sentence.

Figures 2 and 3 describe the frequency of the original

sentences and associated summaries, respectively. 210,000

original sentences with an average word length of 29.7 are

paired to associated summaries with average word length

of 10.7. The average compression rate (Number of words

reduced divided by original sentence length) of this dataset

is 60.47%.

While the dataset also includes additional features such

as POS tags of individual words, we do not use any

additional information apart from the actual text and

associated summary.

3.1. Encoding of input text

To encode individual words of sentences into a machine-

readable format for training in our baseline models, we

convert each word in the original sentence into 300-

dimension GloVe embeddings [6]. The pretrained GloVe

embeddings map words into a vector space with meaningful

linear substructures, providing better word representations

based on word co-occurrences. As the available training

data (210,000 examples) in the Google dataset is small in

comparison to the dataset used by Filippova et al (2 million

examples), we use the GloVe embeddings to supplement

additional semantic information for words in the inputs to

our baseline models. For similar reasons, we use the

embedding layer of a pre-trained language model for our

final model.

3.2. Preparation of labels

To prepare labels for our models, we generate a one-hot

encoded [Equation 1] vector the length of each original

sentence N for each sentence compression pair.

Each element of the one-hot vector is a binary indicator

for the nth word of a sentence 𝑤𝑛 , with true values

signifying the presence of the word in a sentences’

summary (𝑨).

To ensure comparability of model results with previous

works, we use the first 10,000 sentence compression pairs

as our testing set, and the remaining 200,000 pairs for

training our models.

4. Methods

Figure 4 displays the general model architecture used for

all models in this paper. The general model architecture

comprises 3 parts: (i) the embedding layer, (ii) the model

hidden layers, and (iii) the sigmoid output layer.

Individual words from each original sentence are

tokenized and fed into the embedding layer at either word

or wordpiece levels. The embedding layer then creates

vector representations of these inputs, which are then fed

into the model hidden layers, which differ depending on the

Figure 1: Example of sentence compression pair present in

Google dataset

Figure 2: Histogram of original sentence lengths

Figure 3: Histogram of summary sentence lengths

3

model used. Finally, a sigmoid layer generates an output

score between 0 and 1, used to determine if an individual

word should be kept in the sentence summary. Each word

of the sentence will have a corresponding output from the

sigmoid layer. The sentence compression problem is thus

formulated as a multi-label classification task, where each

individual input token is classified into being kept or not.

4.1. The Baseline Model

Our Baseline Model uses GloVe embeddings in the

Embedding Layer to encode our input text. We then add a

single LSTM layer, a max pooling layer and a feed forward

layer to make up the Model Hidden Layers. The structure

of the LSTM layer helps to model both long- and short-term

dependencies amongst words in a sentence. It does this by

holding an internal “cell state” which is updated as words

of a sentence are fed into the layer. Each “cell” of the LSTM

layer consumes the output “hidden state” and “cell state” of

each previous cell alongside each new word, and

determines a new “hidden state” and “cell state” using

input, forget, and output gates.

Equation 3 dictates the formula for the LSTM layer,

where 𝑡 is each subsequent word in a sentence

(representing the “time step”), 𝒉𝒕 is the layer’s hidden state

at 𝑡, 𝒄𝒕 is the cell state at 𝑡, 𝒉𝒕−𝟏 is the layer’s hidden state

at 𝑡-1 or an initialized hidden state at time 0, 𝒊𝒕 is the input

gate, which determines how to update the cell state based

on the new information, 𝒇𝒕 is the forget gate, which

determines what information to remove from the previous

hidden state and current input, and 𝒐𝒕 is the output gate,

which together with the cell state determines the next

hidden state. 𝜎 is the sigmoid function, and ⊙ is the

element-wise product of two matrices.

4.2. The Bi-LSTM Model

The second model we use is like the baseline model in

using GloVe embeddings in the Embedding Layer.

However, we now use a 2-layer bi-directional LSTM to

feed into a max pooling and feed forward layer for our

Model Hidden Layers. Bi-directional LSTMs work

similarly to the regular LSTM used in the Baseline Model.

However, while a regular LSTM only parses a sentences’

words from beginning to end, bi-directional LSTMs also

parse words from end to beginning. This is advantageous as

the internal cell states of the bi-directional LSTM can now

preserve information from both before and after a certain

sentences’ word, allowing for a better representation of

sentence context.

4.3. The Pre-Trained BERT Model

While we first train a model from scratch in the Baseline

and Bi-LSTM models, we instead tap upon pre-trained

language models in our final model. Specifically, we use

the pre-trained BERT language representation model for

fine tuning and transfer learning on our dataset [5]. The

BERT model is pre-trained on 2 tasks: (i) Masked

Language Modeling (predicting the value of randomly

masked words in the input sentence, and (ii) Next Sentence

Prediction (given a pair of 2 sentences, determine if the

second sentence follows after the first in the original text

document) [5]. The two tasks, trained over the

BooksCorpus (800M words) and English Wikipedia

(2500M words), allow the final model to contain rich

semantic information on the English language. On its

release, the BERT model obtained state-of-the-art results in

11 natural language processing tasks [5].

In our final model, we no longer use GloVe embeddings

in our Embedding layer, and instead use the pre-trained

Embedding layer from BERT. This differs from previous

models as BERT’s embedding layer uses WordPiece

embeddings instead of words and encodes each wordpiece

into a 768-dimensional vector [5].

In our Model Hidden Layers, our BERT implementation

stacks 12 separate groups of layers, with each group

containing a self-attention layer feeding into 3 feed forward

layers, alongside normalization and dropout layers after the

1st and 3rd feed forward layers. Each self-attention layer

generates a 768-dimensional representation for each

wordpiece in a sentence based on specific wordpiece

representations in the previous layer. This essentially

creates a weighted representation of each wordpiece in a

sentence based on the various wordpiece representations of

the previous layer. All model parameters for the Embedding

Figure 4: General Model Architecture

4

and Model Hidden Layers are pre-loaded with weights from

the base-uncased version of the BERT model.

4.4. Loss Function and optimizer

All models are trained to minimize the Binary Cross

Entropy loss function [Equation 2] across all output scores

in a sentence, for all sentences in the training data.

 The implementation of the Binary Cross Entropy

function in Equation 2 compares the sigmoid outputs 𝑥𝑛

with the corresponding binary labels 𝒴𝑛 and is lower the

closer 𝒙𝒏 is to 1 when 𝒴𝑛 is 1.

The Adam optimizer [7] takes into account momentum

and the RMSProp algorithm to accelerate learning speed

and is used for all models in this paper.

4.5. Padding of sentences

To standardize the inputs of the sentences in our

models, we pad our original sentences to a length of 150

words per sentence. Original sentences with over 150

words are truncated at the end. Wordpiece lengths are

padded or truncated to a length of 200 respectively.

5. Results and discussion

Various hyperparameter choices were explored in the

training of the models. A grid search was first used to test

learning rates from 0.1 to 1 x 10-6 . Eventually,

implementing an optimizer learning rate scheduler which

decreases the learning rate from 3 x 10-5 , according the

cosine function, with 3 hard restarts was used due to

superior results on the validation set.

The maximum batch size allowed by available GPU

memory was used, for quicker model training time and

faster iterations. This resulted in a batch size of 128 for

Baseline and Bi-LSTM models, and 16 for the BERT pre-

trained model.

The number of epochs each model was trained was

determined by visually inspecting a plot of the training and

validation loss. Optimal epochs were chosen at where

validation loss started to plateau or diverge from the

decrease in training loss. This is to avoid overfitting to the

training set. Other methods used to avoid overfitting were

addition of dropout to the LSTM and BERT models.

Table 1 displays the results of the 3 models alongside the

score of randomly initialized labels for comparison. It can

be seen that even the baseline model provides a significant

performance boost in comparison to randomly choosing

words to keep in the summary. However, the baseline

model is only able to achieve an F1 score of 0.585.

The Bi-LSTM model presents a performance gain over

the Baseline model with a F1 score of 0.604. However,

these low F1 scores result in poor-quality predicted

summaries. Visual analysis of the predicted summaries

show that not only do both the Baseline and Bi-LSTM

model not produce grammatically coherent sentences, they

also are prone to several types of errors (See Appendix A

for a selection of examples from the test set displaying

various types of errors).

The first error prevalent in these models are that

predicted summaries do not end in grammatically coherent

ways. Table 2 shows an example of this, where the Bi-

LSTM prediction ends with an adjective without an

associated noun.

Table 1: Model Results

5

Predictions generated by the Baseline and Bi-LSTM

models also tend to do poorly on sentences with summaries

not consisting of earlier words in the sentence. Table 3

shows an example of a sentence compression pair with this

characteristic, where earlier words in the sentence are not

relevant to the summary.

Finally, the Baseline and Bi-LSTM models are unable to

report numbers properly. Table 4 demonstrates an example

where numbers are dropped from the summary entirely.

Various architectural choices were explored to improve

model performance. However, both increasing the number

of layers and increasing the size of each layer resulted in the

training loss plateauing beyond the first epoch. While

previous authors have proven that having more data would

improve performance [4], it was also difficult to obtain

more data for training, given the lack of publicly available

alternatives

The BERT pre-trained language model was thus used to

combat these issues with the earlier models and lack of

training data. BERT was chosen in order to harness the

semantic information gained in it’s pretraining to our

sentence compression task. As seen in the Tables 2-4, the

model based on Fine-Tuning BERT is able to produce more

grammatically coherent sentences while avoiding the

previously identified pitfalls.

Figure 5 displays the word-level Confusion Matrix

showing the actual labels vs predicted outputs of the BERT

Model. It can be seen from Tables 2-4 that while the BERT

model is unable to fully predict the original summary, its

predictions are mostly grammatically coherent and usable.

The F1-Score for the BERT model is 0.821, similar to the

results of Filippova et al. [4]. However, Filippova et al. [4]

use an additional 2 million sentence compression pairs,

while we are able to achieve the same results with a much

smaller dataset of 200,000 examples.

6. Conclusion

In this paper, we attempt sentence compression by using

extractive text summarization. By formulating the task as a

multi-label deletion-based problem, we are thus able to

train a deep learning model to solve this problem. While

much of the previous literature and current state of the art

models rely on having additional synthetic information as

inputs, we instead fine-tune a model with text as the only

training data, without additional linguistic information.

While models trained from scratch did not perform well

on the dataset, using the pre-trained BERT language model

for fine tuning produced the best results. With fewer

training examples, we achieve similar F1-Scores to past

papers like Filippova et al. [4] and can generate sentences

which are mostly grammatically coherent and usable as

summaries.

With further work, results can still be improved.

Filippova et al. [4] have shown that having a bigger set of

training data would better improve model performance.

Additionally, recent advancements in the Natural language

Processing Community have resulted in more advanced

models than BERT with improved results.

Finally, while not covered in this paper due to

confidentiality purposes, the model was deployed to an

additional 592 paragraphs of a proprietary dataset

containing economic reports owned by the author’s

workplace, with good results (0.782 F1 Score, attributable

to differences in the domain of the datasets). Going

forward, we will be implementing this model in the

workplace to distil various articles for easy consumption.

Table 2: Example where Bi-LSTM is unable to end summary well

Table 3: Example where earlier words are not used in summary

Table 4: Example where numbers are needed in summary

Figure 5: Confusion matrix for BERT model

6

7. Results and discussion

All steps involved in this project were conducted by

Lum Yao Jun only.

8. References

[1] Filippova, K., & Altun, Y. (2013). Overcoming the

Lack of Parallel Data in Sentence Compression. EMNLP.

[2] Zhao, Y., Luo, Z., & Aizawa, A. (2018). A Language

Model based Evaluator for Sentence Compression. ACL.

[3] Kamigaito, H., & Okumura, M. (2020). Syntactically

Look-Ahead Attention Network for Sentence

Compression. ArXiv, abs/2002.01145.

[4] Filippova, K., Alfonseca, E., Colmenares, C.A.,

Kaiser, L., & Vinyals, O. (2015). Sentence Compression

by Deletion with LSTMs. EMNLP.

[5] Devlin, J., Chang, M., Lee, K., & Toutanova, K.

(2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. ArXiv,

abs/1810.04805.

[6] Pennington, J., Socher, R., & Manning, C. D. (2014,

October). Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP) (pp.

1532-1543).

[7] Kingma, D. P., & Adam, B. J. (2017). A method for

stochastic optimization. cornell university library. arXiv

preprint arXiv:1412.6980.

[8] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,

V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011).

Scikit-learn: Machine learning in Python. the Journal of

machine Learning research, 12, 2825-2830.

[9] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,

J., Chanan, G., … Chintala, S. (2019). PyTorch: An

Imperative Style, High-Performance Deep Learning

Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F.

d extquotesingle Alch'e-Buc, E. Fox, & R. Garnett

(Eds.), Advances in Neural Information Processing

Systems 32 (pp. 8024–8035). Curran Associates, Inc.

Retrieved from http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-

learning-library.pdf

[10] Wolf, T., Debut, L., Sanh, V., Chaumond, J.,

Delangue, C., Moi, A., ... & Brew, J. (2019). Transformers:

State-of-the-art Natural Language Processing. arXiv

preprint arXiv:1910.03771.

[11] Chollet, F., & others. (2015). Keras. GitHub.

Retrieved from https://github.com/fchollet/keras

[11] Oliphant, T. E. (2006). A guide to NumPy (Vol. 1).

Trelgol Publishing USA.

[12] McKinney, W., & others. (2010). Data structures for

statistical computing in python. In Proceedings of the 9th

Python in Science Conference (Vol. 445, pp. 51–56).

[13] Loper, E., & Bird, S. (2002). NLTK: the natural

language toolkit. arXiv preprint cs/0205028.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/fchollet/keras

7

Appendix A: Sample Predictions

