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Motivation 

Our lab studies the evolution of skeletal traits. 

Measuring lengths of various bones is a fundamental 

routine. By doing so we have discovered genetic 

elements that, through regulating relative lengths of 

different bones, gave rise to diverse forms of 

organisms1–3. Nevertheless, the process itself was 

repetitive and tedious, which motivated me to 

automize the task: given an X-ray image, the 

algorithm should return the lengths of all skeletal 

elements of interest. This requires the algorithm to 

identify the coordinates of the two ends of interested 

bones. As a pilot model, FishPose deals with X-ray 

images of threespine sticklebacks (Gasterosteus 

aculeatus), for our lab has a database of thousands of 

such images, and the planar nature of the fish body 

plan simplifies this incipient project.  

Related works 

Although intuitively, object detection algorithms4 and X-ray image classification5,6 seems relevant, the task 

is actually more directly related to pose estimation: given an image, the algorithm identifies the coordinates 

of certain key points, whether they be human joints or fish bone tips. 

DeepPose was the first to tackle human pose estimation using deep learning7. The authors implemented a 

7-layer convolutional neural net and trained the model to minimize the distances between ground-truth and 

predicted coordinates. Later deep-learning pose estimators achieve better and better metrics8. Recent 

advances have enabled real-time, multi-person pose estimation of ambiguous pictures10,11.  

Unlike the task these latest human pose estimators were addressing, FishPose has its unique advantages and 

challenges. Due to the scientific nature, our input images are unambiguous, with all parts of a fish clearly 

visible and well separated from other fish. Furthermore, fish poses are much more inflexible compared to 

that of humans. On the other hand, while regular human beings all have the same number of joints, fish 

Figure 1 Threespine stickleback, alive (top) and X-rayed (bottom) 

11 coordinates FishPose aims to predict are labeled on the X-ray 

image. Except for pelvis (purple), each pair marks the length of an 

element: White: standard length. Red, yellow and green: 1st, 2nd and 

3rd dorsal spine. Blue: anal spine. ~4% fish have a 4th spine, which is 

labeled as the 12th and 13th coordinates when present. 
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have variation in numbers of skeletal elements, even within the same species12,13. Thus, in addition to 

predicting where a mark is, FishPose also has to predict whether the mark exist at all. Furthermore, the 

amount of data is limited. The goal is therefore not to build a versatile model that can handle any weird X-

ray images, but a simple model that performs well with limited training data.  

Network implementation 

 

The model, adapted from DeepPose7, is a six-layer neural network in the shapes C1(50 x 150 x 48) – ReLU 

– P – C2(25 x 75 x 128) – ReLU – P – C3(6 x 18 x 192) – ReLU – C4(6 x 18 x 64) – ReLU – P – F(512) 

– ReLU – F(39), where C denotes a convolutional layer, P a max-pooling layer with strides of 2 and F a 

fully connected layer. The filter sizes are all 5 x 5, except for C4, which uses a 1x 1 filter.  

26 elements of the final layer denote the coordinates of the 13 marks (see Figure 1), while the remaining 

13 denote whether they are present or not. L2 norm, which calculates the distances between predicted 

coordinates and the ground truth, is used to compute the “coordinate loss” when a mark is present. On the 

other hand, I use binary cross entropy to calculate the “presence loss”. The final loss is the sum of coordinate 

loss and presence loss. To increase performance of coordinate precision, presence loss is capped at 0.05 

(implemented as ReLU(presence_loss – 0.05)).  

The loss is in turn minimized using Adam optimizer. Training is performed for 100 epochs with a minibatch 

size of 64 and a learning rate of 0.001 that reduces 6% for every 200 steps. 

Figure 2 FishPose architecture 



Dataset 

The training set contained 3,332 fish and the validation set had 

24 fish.  

Our lab has 2,956 X-ray images that contains a total of 6,896 

fishes. Of these fish, 931 threespine sticklebacks were labeled 

to some extent: 179 fish with only standard length labeled, 185 

fish with 3rd dorsal spine and anal spine labeled, 55 fish with all 

but standard length labeled, and 512 fish with all five elements 

labeled. I further labeled 759 fish, which have the pelvis and 

occasional 4th spine additionally labeled, with a little help from 

my friends. The validation set was picked from these 759 fish. 

All other fish were augmented by flipping horizontally. 

For input images, individual fishes were cropped out into 100 

* 300 px boxes with proprietary non-deep learning code. The 

labels (coordinates of markers) were normalized to the box 

dimensions and center coordinate. 

Results 

Figure 3 showed four predictions made by the baseline model. 

The model predicted even the folded spines in B correctly. C 

was a rare case where the head and tail coordinates had large 

deviation. Both C and D demonstrated that FishPose still had 

trouble identifying smaller spines.  

Comparison with previous models 

Percentage of correct key-points (PCK) was a 

common metric for assessing human pose 

estimators. It calculates how many predicted 

joints are within a certain threshold from their 

ground truth. A common threshold is 0.5 * head 

size7,8. Since I did not explicitly measure the fish 

head, I instead used 0.05 * fish standard length as 

the threshold. The baseline model achieved a 

PCK@0.05 of 0.9886, among the highest of pose 

estimators8,9. The high performance was of no 

surprise considering the relatively simple and 

invariable inputs.  

Individual marks  

As shown in Error! Reference source not 

found.A, the median performance of every mark 

fell within a few pixels from ground truth. 

However, larger deviations were still common, 

especially for tips of spines (*_t). 

Figure 3 Representative predictions of validation images 

Dots mark ground truths, and lines extend from ground truths 

to predicted coordinates.  
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Figure 4 Quantitative assessments 

(A) Distance (px) from predicted to 

actual coordinates. (B) Predicted – 

actual length differences normalized 

by actual lengths. Abbreviations: as: 

anal spine; ds: dorsal spine; _b: base; 

_t: tip; std_len: standard length. 



Measuring lengths 

The original purpose of FishPose was to measure lengths of bones of interest. Figure 4B quantified how 

well the model performed, which we can see was anything but well. Except for the standard length, 

predicted lengths easily deviated more than 10% from the truth. The performance discrepancy between 

individual mark and length measurements came from the fact that many spines were short, where a few 

pixels’ deviation could result in major measuring errors. 

Discovering genomic regions responsible for skeletal traits 

Despite of that, FishPose is already useful. Figure 5A shows the result of quantitative trait loci (QTL) 

mapping by Howes at al3. The analysis required manually measuring various lengths of 590 fish, 

determining their genotypes on 466 different genomic positions, and examining which positions’ genotype 

predicted certain phenotypes. I used FishPose to measure the lengths of the same fish (which was not in the 

training set nor the validation set), and followed the analysis14. Even though not all predictions were precise 

(Figure 5C), remarkably, all significant peaks were recovered, including the major peak on chromosome 4, 

the minor peak on chromosome 13, and the small peak at the end of chromosome 6 for dorsal spine 2 

(Figure 5B, arrows). As pathetic the performance as shown in Figure 4B, FishPose is good enough for such 

genome-wide scale analysis, and is promising for discovering candidate genomic regions and phenotypes 

for further experiments. 

Presence and absence of individual marks 

FishPose was supposed to determine whether a mark was present. Unfortunately, due to unbalanced data, 

the model’s predictions were invariable (always present or absent depending on the mark.) This is especially 

problematic for the rare (~3%) 4th spine, whose identification is of tremendous interest to the lab. Using 

weighted cross entropy to punish false negative did not help. The model never improved on recognizing 

the 4th spine until it started predicting the 4th spine at random locations. 

  

Figure 5 Genomic regions controlling lengths of dorsal 

spine 1 and 2 

(A) Adapted from Howes et al (2017). (B) QTL analysis 

using lengths measured by FishPose. Dashed lines: 

significance threshold obtained through permutations tests 

(α = 0.05). Tick marks on x-axis correspond to marker 

positions on the linkage map. (C) Two fish with marks 

predicted by FishPose. The prediction of the upper one is 

good, and that of the lower one is not. 



Conclusion and Future Works 

FishPose predicts the coordinates of 11 anatomical marks given a Xray image. With a simple 6-layer-

ConvNet and a training set of 3,332 fish, the model performed reasonably well. Remarkably, with mediocre 

precision, FishPose recapitulated the result of a major QTL mapping. Such accomplishment demonstrated 

that days of labor in measuring length can be exempted with FishPose.  

More data 

The model approached subpixel precision for the training set, suggesting that it needs more training data to 

capture the full range of diversity in stickleback “poses”. There are still more than two thousand unlabeled 

fish in the lab database. Incorporating all of them into training set would further this goal. Importantly, this 

would also increase the incidences of rare fish phenotypes (eg. 4-spine), creating a wider freedom for data 

augmentation. Experiences in recruiting friends and family to annotate suggested that the most efficient 

way to achieve this goal would be through training a few paid workers personally, regarding the amount of 

prior knowledge required for labeling.  

Additional data augmentation 

Horizontal flipping has enabled the model to handle both orientations well. Considering that the model had 

most trouble pinpointing the spine tips, artificially rotate the spines in the images can hopefully increase 

training set diversity and improve the model.  

With a similar technique, adding or deleting spine can help balance the dataset, and help FishPose make 

meaningful predictions on the presence and absence of anatomical marks. 

Transferability of the model 

We have a smaller dataset of images of closely related fish species. By testing how well FishPose, with 

minor tweaks in architecture, performs on those data, I can examinet how easily applicable the model is to 

a broader research community, where people study not only skeletal evolution of various fish species, but 

also pigeons, snakes, lizards and mice as well.  
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Appendix: enhancing dorsal spine coordinate precision (in vain) 

This section describes the myriad of futile attempts to help FishPose better predict the positions of dorsal 

spines. 

Hourglass model 

It was an unpleasant surprise that the model did not readily learn 

the features of the spine tips. This could be due to failure of 

propagating high-resolution information from lower layers to 

the final decision-making layer. To address this problem, I 

implemented a simplified hourglass architecture. 

Inspired by 9, the network had layers in the shapes C1(50 x 150 

x 64) – ReLU – P – C2(12 x 37 x 128) – ReLU – P – C3(6 x 18 

x 256) – ReLU – P – C4(3 x 9 x 256) – ReLU – C5(6 x 18 x 

256) – ReLU – C6(12 x 37 x 128) – ReLU – C7(50 x 150 x 64) 

– ReLU – F(512) – ReLU – F(20). The filter sizes are 5 x 5 for 

C1 and C2, 3 x 3 for C3 and 1 x 1 for the rest. In addition, the 

activations of C1, C2 and C3 undergoes another 1 x 1 

convolution and the values are added elementwise to C7, C6 and C5, respectively. 

Unfortunately, during training, while the training set cost continued to go down with each epoch, the 

validation set plateaued after only 20 epochs, and is worse than the baseline model (Figure 6). The increased 

number of parameters, compounded with small data size, likely made this more complicated model suffered 

from high variance problem. I tried skipping the 3rd and 5th layer to reduce complexity, but it did not help. 

Object identification for spines 

An alternative approach was to view all spines as equal (instead of 1st, 2nd …) and identify their positions 

with an object identification algorithm. I implemented a simplified YOLO model4 and incorporated it into 

the baseline model. Specifically, an image was divided into 67 horizontal grids. The grid responsible for 

detecting a spine was the one containing its midpoint. The output of C3 of the baseline model was resized 

to (1,67), went through two 1 x 1 convolutional layers with 64 and 5 filters respectively. The final 5 filters 

indicated the presence/absence of a spine, and the xy coordinates of the two ends, respectively.  

This model failed catastrophically. It could not identify most spines. The few predictions were not precise. 

Nevertheless, I do think this approach is promising for analyzing repetitive structures that varies in number 

(eg. spines, vertebra). To improve the model without an insurmountable increase in dataset volume, a 

probable fix is to have a different grid scheme. 67 horizontal grids were necessary for separating all spines. 

However, this meant that most grids would not have any spine, creating unbalance. While adding anchor 

boxes (the spines have similar aspect ratios) or adding vertical grids (spines have nearly identical y-

coordinates) are useless, variable grid width, sampling more densely at mid-fish, could reduce grid number 

and possibly enhance model performance. 

Data augmentation attempts 

I tried cropping out the spine regions and added them into the training set, to give the model more practice 

on the spines. While the model did not perform better on the spines, it did worse on other marks. 

Mid points 

In order for the model to learn that the predicted line should be on the spine, I computationally asked the 

model to also predict the mid-points of the spines, which, unlike the tips, should fall on high pixel intensities. 

Performance was not enhanced significantly: tips of spines could still be in random places. Nevertheless, 
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Figure 6 Cost during gradient descent 

Compared with baseline model, the hourglass model 

overfitted the training set and performs poorly on the 

validation set. 



the model did learn that the midpoint, the tip and the base should form a line. Good job for learning 

something useless to humans, model. 

Alternative loss function 

To come up with a way to punish every point along the predicted line that deviated from the spine, I 

implemented a third loss function to go along side “presence loss” and “coordinate loss”: I asked the model 

to minimize the area between predicted and actual spines. It did not increase the performance. 

The fundamental reason that data augmentation attempts, mid points and alternative loss function failed to 

improve model performance was that they helped by enhancing training, but the model was already 

impeccably good at the training set. It just had trouble extracting generalized rules and apply them on the 

validation set.  
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