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Abstract

Magnetic Resonance Imaging (MRI) scans are frequently used by physicians to
diagnose and plan treatments for brain tumors. One component of this workflow
involves the segmentation of the tumor from the scan. Due to the time consuming
nature of this task, automated segmentation algorithms are of interest to the medical
research community. This paper explores how deep learning can be applied to
segment out tumors from MRI scans, focusing on a patch-based training approach
utilizing the U-Net architecture. Training and evaluation was done on the Multi-
modal Brain Tumor Segmentation Challenge (BraTS) 2018 dataset, achieving a
Dice score of 0.54676 and a 95th percentile Hausdorff distance of 6.30415 for the
enhancing tumor (ET) segmentation on the validation dataset.

1 Introduction

Magnetic Resonance Imaging (MRI) scans are a common medical imaging tool used by medical
professionals in the diagnosis of brain tumors. By using a magnetic field and radio waves, the scanner
is able to map out a detailed volumetric (3D) image of the patient’s brain. Radiologists are then able to
analyze these scans to determine exactly where the tumor is located. However, manual segmentation
of the tumor by radiologists takes a lot of time and effort, and is prone to error. Due to this bottleneck,
there is a large interest in researching automated algorithms for tumor segmentation. Having such a
tool can significantly cut down their workload as they will only need to correct the mistakes made by
the algorithm instead of having to classify every voxel manually. This project investigates how deep
learning can be used to achieve this task. Given an input 3D MRI scan from the BraTS 2018 dataset
of a patient with a glioma, we apply image segmentation techniques to obtain an output segmentation
of the tumor in the same format.

2 Related work

Image segmentation is a widely studied area of computer vision which differs from standard classifi-
cation tasks in that it requires a classification on a pixel level. To provide this localization, Ciresan et
al. [10] used a sliding window approach to classify each individual pixel based on its surroundings
with a convolutional neural network based architecture. As this required running the classification
network on each individual pixel, it was quite slow. Ronneberger et al. [18] came up with the U-Net
architecture based on fully convolutional networks, which is able to do this task much more quickly
and accurately.

The U-Net architecture by Ronneberger et al. was a 2D convolutional neural network based archi-
tecture. As such, it is unable to accurately capture the volumetric properties of the MRI scans as it
can only process one slice at a time, thus ignoring the relationships between adjacent slices. A 3D
variant of the U-Net architecture was quickly proposed by Cicek et al. [20] to handle this issue. This
new network is essentially an extension of the 2D variant, namely by replacing all 2D operations
with their 3D versions. Instead of taking in a slice of the image, it can generalize to take in a 3D
subvolume, which is ideal for medical imaging segmentation tasks.
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Figure 1: The top two images represent a specific slice for the Flair and T1ce modalities. Bottom left
is our baseline prediction for the enhancing tumor, and bottom right is the ground truth.

In the 2018 BraTS challenge, Isensee et al. [12] built upon the 3D U-Net architecture to solve the
task of tumor segmentation. Having placed second overall, they showed that a generic 3D U-Net with
minor changes was able to score very well on the dataset. By optimizing the training aspect rather
than the architecture design, such as through intelligently picking hyperparameters like patch size
and using various data augmentation techniques, they were able to achieve a Dice score of 0.7788
and a Hausdorff distance of 2.90 for the enhancing tumor on the test set. On the other hand, the first
place team overall in the BraTS 2018 challenge follows a CNN based encoder-decoder approach with
an additional variational auto-encoder to reconstruct the original image for regularization purposes
during training [16]. This approach achieved a Dice score of 0.7664 and a Hausdorff distance of
3.7731 for the enhancing tumor on the test set.

3 Dataset

The dataset we have chosen for training is the MICCAI BraTS 2018 dataset [6, 15, 4, 5, 2, 3].
The dataset, which is 2.8GB in size, is split into two parts for training and validation, consisting
of 285 samples and 66 samples respectively. Evaluation of the overall model was done using the
validation set. During the model training process, the training set itself was randomly split into a
80/20 training/validation split.

The training subset is further divided into low grade glioma (LGG) and high grade glioma (HGG)
classes. Although each sample consists of four NifTI files representing different modalities (T1,
T1ce, T2, Flair), we are only interested in using the T1ce and Flair modalities as these are most
commonly available in clinical settings. Each file is a 3D image of size (240, 240, 155) where each
voxel represents the intensity at that location. The orientation of the image is from the axial view.
Although some preprocessing such as skull stripping has already been applied to the image, the
voxel intensities are not standardized as they are collected from different institutions. The training
set also has an additional file of the same dimensions which represents the ground truth for the
segmentation as evaluated by experts. This contains annotations for the whole tumor (WT), tumor
core (TC), enhancing tumor (ET) and the background classes. For this project, we are only interested
in segmenting the enhancing tumor. Figure 1 gives an example of what the data looks like as well as
an example segmentation.

One issue is that the 3D nature of the images means that running the data through a deep learning
model will be computationally expensive and take up a lot of memory. It is not feasible to pass in the
entire image all at once to the network. We avoid this issue by training with patches. Additionally,
as this is a segmentation problem, we can expect that the background class will dominate the tumor
classes. This is indeed the case; we find that non-tumorous voxels account for 98.88% of all labels in
the training set, while the other regions account for 0.2% (ET), 0.28% (TC), and 0.64% (WT) of the
labels. We experimented with a statistical based subsampling algorithm to generate the patches in a
way to avoid training with patches that have a low presence of enhancing tumors.
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Figure 2: The architecture for our modified U-Net network.

Due to the large size of the data, we use a Keras [9] data generator to generate patches of size (80, 80,
80) to train with on the fly using the subsampling algorithms. Preprocessing is done to each generated
patch, including standardization of the patch to have 0 mean and unit variance, as well as standard
data augmentation techniques for images such as translations, flipping and rotations.

4 Methods

As mentioned above, U-Net models are generally considered a good choice for image segmentation
problems. We decided to base our architecture on U-Nets as we sympathize with the sentiment
of Isensee [12] in keeping the architecture simple and focusing on the training component as we
felt this would help deal with the disadvantage of using only 50% of the data. These types of
architectures consist of a “contracting" path followed by a “expanding" path. In the contracting
path, the dimensions of the input are halved in every convolutional block via the use of max pooling
layers, while the number of feature channels are doubled. This part of the network is similar to a
typical convolutional network in that it aims to extract the image features from the input. On the
other hand, the upsampling path is the inverse to the downsampling path; the dimensions of the
input are doubled in every convolutional block through up convolutions, while the number of feature
channels are halved. The goal of this path is to reconstruct the segmentation mask by using the image
features from the contracting path, and thus a concatenation is also used to glue these layers together.
Finally, a 1x1x1 convolution is used to create the one-hot segmentation mask as the output. Due to
issues with overfitting, we decided to use a slightly modified U-Net architecture as in Figure 2 for our
experiments by adding batch norm and dropout (with probability 0.5) layers. ReLU activation was
used except for the final activation, where we decided to go with softmax.

We decided to use soft dice loss [13]

L(y, ŷ) := 1− Dice(y, ŷ) = 1−
2
∑

x,y,z(y ∗ ŷ) + ε∑
x,y,z(y ∗ y) +

∑
x,y,z(ŷ ∗ ŷ) + ε

(1)

as our loss function because the main evaluation metric is the Dice score. Here, y is a tensor of the
true target labels, ŷ is a tensor of our predicted probabilities, ε = 1 is a smoothing constant and ∗
denotes elementwise matrix multiplication. An additional bonus of using such a loss function is that
it is able to deal with imbalanced data.

4.1 Baseline

For our baseline model, we decided to go with a generic 2D U-Net architecture with a depth of 4 with
64 filters initially, as 3D models are hard to train. We used the implementation from the keras-unet
package [19]. We process each slice in the z dimension separately and combine the results together.
While this allowed us to speed up computation time compared to the 3D U-Net, it ignores the fact that
tumors are three dimensional. Nevertheless, we found that this was a good baseline to work from.
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In addition to the preprocessing steps mentioned above, we filtered out the z slices with no enhancing
tumor pixels present, and only use those slices with at least one pixel containing the enhancing tumor.
This was designed to combat the large class imbalance, as we would expect that the majority of the
image would be non-tumorous. Applying this additional preprocessing step helped speed up training
and improved the accuracy of the predictions.

4.2 3D U-Net

In order to fully take advantage of the 3D nature of the input, we implemented a 3D generalization of
the U-Net architecture [20] as seen in Figure 2. We chose to keep the depth of the U-Net model as 4,
as we found that it was a reasonable compromise between complexity and efficiency. However, due
to the much larger amount of parameters in a 3D model, we needed to drop the initial filter size to
32 as well as do patch based training in order to fit in GPU memory. For this project, we explored
different subsampling algorithms to generate the patches.

The subsampling algorithm present in the baseline model can easily be extended to a 3D patch.
Instead of taking a 2D slice of size (240, 240, 1) as the input, we can take a 3D subvolume of
size (240, 240, nz). Here, we picked nz = 16. In an analogous manner to the preprocessing steps
of the baseline model, we pick only the patches which have at least t many voxels containing the
enhancing tumor. We experimented with t = 0, 100, 1000, 1000 and found that 100 worked well for
our purposes.

Another approach we explored was a statistical sampling approach to generate the patches. We
tried out different patch sizes but decided to go with (80, 80, 80). Instead of generating patches
with uniform probability as in Isensee et al. [12], we designed a simple statistical algorithm that
optimizes for picking patches with more tumorous voxels, thus ensuring higher data quality. We use
the observation that tumors are generally condensed together in one region of the brain, rather than
spread out in a uniform fashion. Thus, we compute the center of mass (cx, cy, cz) of the enhancing
tumor and add i.i.d Gaussian noise with 0 mean and σ variance to generate the midpoint of a patch.
This is generated on the fly during training, and preprocessing is applied to each of these patches. We
picked σ = 20.408164, which roughly leads to a 95% probability of the patch containing the center
of mass. The idea behind this is that it would help the model to fine tune its classification abilities
on a more granular level by avoiding the background as much possible, and to be able to speed up
convergence by training with patches that (on average) contains lots of enhancing tumor voxels. Due
to issues with the smoothness of the predictions, inference was done by predicting on overlapping
patches (with stride 20 in each direction) and then taking the average to get the final segmentation
rather than splitting the image up into disjoint 80x80x80 patches and doing the predictions separately
for each patch.

We also played around with an additional hyperparameter α ∈ [0, 1] such that we generate the patch
using the Gaussian method with probability α, and the uniform random method with probability
(1− α). The goal of this weighted average was to find a balance in order to ensure that the algorithm
is not too aggressive in classifying voxels as tumorous (large α), while also not being too passive
(small α). We observed that playing around α did not influence the results in a significant manner to
justify the additional hyperparameter.

5 Experiments/Results/Discussion

We experimented with different optimizers and learning rates but we found that Adam optimizer
with a learning rate of 0.0001 provided the most stable training. Our batch size was 2; this was the
biggest power of 2 such that the network would fit in GPU memory. We trained for a total of 35
epochs with 3000 patches per epoch on an NVIDIA RTX 2080 Ti. We decided to stop at epoch 35 as
it seemed like the training loss was plateauing. The metrics we used were the same ones used for
BraTS evaluation; Dice score (as seen in (1) but with predictions rather than probabilities), Hausdorff
distance dH [14], sensitivity and specificity. We have

dH(yet, ŷet) = max{ sup
u∈yet

inf
v∈ŷet

d2(u, v), sup
u∈ŷet

inf
v∈yet

d2(u, v)}, (2)

where d2 denotes the `2 metric, and the et subscript indicates the subset of the image containing
the enhancing tumor class. Intuitively, Hausdorff distance gives a measure of whether or not the
segmentations of the tumor are close to where it should be.
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Inference on the validation set was done and submitted to the CBICA Image Processing Portal [17]
for evaluation, as seen in Table 1.

Dice Score Hausdorff Distance Sensitivity Specificity
Baseline 0.45001/0.54291 58.94707/62.19492 0.44159/0.48235 0.92951/0.99707
3D Baseline 0.53241/0.68811 61.25853/53.61282 0.60653/0.74911 0.96609/0.99804
Uniform samp. 0.53003/0.69635 9.53483/3.74166 0.60815/0.86128 0.99680/0.99920
Gaussian samp. 0.54676/0.74373 6.30415/4.00000 0.52668/0.65533 0.99863/0.99972

Table 1: Mean/Median metric scores after submission of predictions.

From Table 1, we found that for all our models, the mean scores were significantly worse than the
median score for all metrics. Looking further into the results, we saw that there were a few outliers in
the validation dataset for which all of our models did not find any enhancing tumor voxels, which
had a significant impact on the mean scores. Taking out these outliers seems to bring the mean much
closer to the median, as seen in Table 2. One possible explanation for these outliers are that they
are LGG examples, where there may be no or very little enhancing tumor. Looking into the training
dataset seems to support this theory, as we found multiple examples which had no enhancing tumors
in the ground truth. In our research, we found that other papers also had problems with these outliers
[1, 7, 8, 11]. Further investigation needs to be done into why these outliers exist and how to address
these.

From a quantitative standpoint and disregarding the outliers, our model does a decent job at seg-
menting the enhancing tumor. The low Hausdorff distance means that it has successfully learnt to
identify the precise location of the tumor in the brain. While it does really well on the specificity
metric, the relatively low sensitivity values suggests that the model is too conservative in predicting
voxels as tumorous, possibly as a result of the major class imbalance. As expected, the baseline does
the poorest out of all our models - this is expected as it does not use the 3D nature of the input. It is
also expected that the 3D extension with 16 slices would do worse compared to the sampling based
approaches; the number of training patches of size 240x240x16 is much smaller than the number
of patches of size 80x80x80, so overfitting becomes an issue. On the other hand, it is interesting to
see that the two different sampling approaches perform at a similar level. One explanation for this is
that the training was done for a reasonably long time (around 10 hours each) until both approaches
plateaued so in the end there was no big difference as the uniform sampling method was able to
adequately explore the patch space. Indeed, we observe in Figure 3 that the Gaussian approach had
consistently lower training loss compared to the uniform approach, suggesting that the Gaussian
method leads to slightly faster convergence. Finally, the low training loss compared to our Dice score
on the validation dataset indicates that the model is overfitting. We applied preprocessing and data
augmentation techniques as well as dropout and batch norm layers as described above to mitigate this
issue. Figure 4 shows an example of a segmentation.

Dice Score Hausdorff Distance Sensitivity Specificity
Baseline 0.57916 50.46157 0.56495 0.98964
3D extension of baseline 0.66297 36.84994 0.70951 0.99628
Uniform sampling 0.72753 5.89898 0.80491 0.99886
Gaussian sampling 0.72317 5.06761 0.69598 0.99795

Table 2: Mean metric scores after removing outliers.

6 Conclusion/Future Work

In this project we explored the application of deep learning to the area of medical imaging. We used
the U-Net architecture to segment out brain tumors from 3D MRI scans, and investigated different
methods for generating patches in patch based training. Our methods were fairly accurate in the
segmentation of the enhancing tumor, although it did not do well on certain outliers in the validation
dataset. The uniform and Gaussian sampling methods performed at a similar level in our primary
metrics, although it seems like the Gaussian method would have slightly faster convergence. Future
work in this area could involve investigating the differences between these sampling methods on
more customized architectures rather than a generic U-Net architecture.
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8 Appendix

Figure 3: Training loss over epochs of the Uniform and Gaussian sampling algorithms. Soft dice loss
is used.

Figure 4: An example of a segmentation on a particular slice of a testing sample. The top row consists
of the Flair and T1ce modalities along with the ground truth, and the bottom row consists of our
extension, uniform sampling and Gaussian sampling segmentations respectively.
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