SACLA Timing Tool Calibration
Based on Neural Network Algorithm

Viktor Krapivin
Yijing Huang*
Department of Applied Physics
Stanford University

Abstract

We calibrated SACLA timing tool using neural network algorithm and was able
to correct the problems caused by traditional calibration method. We trained two
neural networks, the first is used to filter cases where timing tool physically fails,
the second returns the value we need for time tool calibration. This is a more user
friendly scheme as it does not require user to switch between models and tune the
parameters. It also retains more data points because and could potentially help us
improve time resolution.

1 Introduction

SACLA timing tool uses the "spatial encoding” method to calibrate the jitter between ultrashort X ray
pulse and optical pulse. The X ray pulse decreases the transmission of optical pulse through GaAs
crystal. Therefore when two beams overlap in space and time, certain parts on the image taken of the
transparent GaAs crystal turn darker than it would be without two beams overlapped. The shot by
shot jitter between the two pulses is encoded in the position of an identifiable edge between dark part
and bright part of this timing tool image [1](see[I] (a)). The goal is to first to distinguish between
cases where this jitter information is physically encoded/not encoded, and second, if it is encoded,
return the edge position as a number which will later be translated into timing jitter.

2 Related work

Traditional timing tool analyzer program will filter out images that are not physically encoded and
then perform fitting algorithm on images that are successfully encoded.

The cases of physcially failed encoding can be categorized into X-ray caused, laser caused or other,
see [1]. Important cases include, weak X ray pulse, low laser intensity, saturated laser intensity,
temporal overlap out of range, lack of edge, and false edge. The paper published for the earliest
commissioning of the calibration tool indicates that these cases in total only contribute 0.5% of
the total shots, see [1]. In our experience, long term use of the machine causes damage spots.
Furthermore due to temperature fluctuations (such as night to day) experimental conditions produced
by the 1 kilometer long laser may change. It is important to develop a more robust method.

For successfully encoded images, the user program first takes the input image(see [I] (a)) and
integrates over vertical axis to project on horizontal axis(see|l|(b)). The orange trace is projected
from reference image with no X ray, and blue trace is projected from a successfully encoded X ray

*krapivin @stanford.edu, huangyj@stanford.edu

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

on images, which shows a clear rising edge. Dividing the X ray on image with the X ray off image
yields [1| (c). This preprocessed curve is then passed to an edge fitting algorithm chosen by user,
including 1) edge fitting with an erf function, 2)smoothing and taking the maximum of its derivative
to find the edge. These algorithms suffer from high failure rate when there is intensity dependent
damage spot. In practice, this fitting scheme relies on the edge preserving an ideal shape across the
experiment. Therefore when machine drifts on year scale and damage spots occur, users need to fine
tune the fitting/smoothing parameters, as well as region of interest(ROI) to make the classification
and edge finding work. This becomes very user unfriendly, and is a great distraction from other beam
time tasks.

We believe that the deep learning algorithm will be a solution to the problems. We can train neural
networks to address drifting conditions through data from multiple days and experiments. The task
can be classified as image discrimination(returns a True/False label) and image regression(returns the
encoded value). For the second task we refer to [2].

3 Dataset and Features

Throughout the beamtime we have on the order of 1e7 images. Each raw image is cropped into (1920,
110).

For training the discriminator, we use the raw images. We can easily get images where we know X
ray laser is off(X ray laser status is recorded in the data stream), and call it M1-Datasetl, we then
hand label the images where the traditional algorithm returns a NaN(not a number) . These include
images where the algorithms fails but still have identifiable edges(encoding is good), and images
where the X ray could be on but the encoding is bad. We call it M1-Dataset2. M1-Dataset] includes
5e3 images and M1-Dataset2 includes only 5e2 images. We use both datasets for training, and
preserve a portion of them for test and development.

For training the image regression machine, we use raw image divided by reference X ray off image.
Note that a damage spot which does not exist in the original commissioning report[1] shows up for
some shots but not the others. The eventual "label" Y will be a scalar representing the pixel value
of the edge. We create M2-Dataset] using the encoded value as output by SACLA user timing tool
analyzer, which is of size 1e6. We also create a smaller M2-Dataset2 by supervising the peak finding,
this one is of size 5e2. We split M2-Dataset1 for training set and development set. The data size of
training set for our basic algorithm is approximately 2 * 10° images and the dev set is 5 * 10* images.
We use M2-Dataset2 for test set.

4 Methods

The Discriminator flattens the image and put it into 4 dense layers. The neuron numbers of each
layer are 3, 10, 10, 10 separately. The loss function is binary cross entropy with L2 regularization on
weights and bias. The optimizer is Adam.

The image regression machine uses 3 convolutional neural nets followed by three densely connected
neural nets. The filter sizes of the 2D ConvNets are (3,3,13),(3,3,21),(3,3,33),(3,3,44), and the densely
connected layers contain 40, 10, and 1 neurons separately. The loss function is mean absolute error
plus regularization on weights and bias. The optimizer is Adam. The last two layers are trained
through transfer learning.

The architectures of these two neural nets are shown in figurg?] Code may be seen at the github
repository https://github.com/vikrapivin/timetool_edge_finding,.

S Experiments/Results/Discussion

We trained 1 epoch of the algorithm for a set of approximately 10°, load a new image set and
continue training until we have trained through our entire training set(in total 107). The reason for
this is that a particular dataset in our field is typically saved as an hdf5 file from the experiment, and
loading minibatches allows for training the neural network without overflowing memory.

For hyperparameter tuning, we tried a range of convolutional filter sizes for each layer,
regularization penalty, dense layer sizes, and optimizer parameters including learning rate. This
is done in a systematic way, in combination with several choices of loss function. We randomize

https://github.com/vikrapivin/timetool_edge_finding

the choices and train neural nets for a while for each choice, save several metrics for each training
scheme, and compare the results to find out which is the best choice. And then we decide on the
hyper parameter that we want to use.

Primary metric we use is mean absolute error as this metric produced better results on the whole
data set. Additionally, the best model using either the mean absolute error metric of mean squared
error metric produces similar results. The training process showing loss function vs epoch number is
shown in figur

To visualize the results of the binary classifier we output a confusion matrix, see Tabld5] False means
the data is successfully encoded. True means the data encoding is bad. The model is improvement in
the sense that it recycled runs from the thrown shots, as the entire test data set was sampled from
images that were previously classified as bad images(NaNs). But meanwhile it predicts a lot of bad
shots as valid encoded, and the edge finding on False positive tends to result in larger error.

To visualize the results of the image regression, see figured] (a) is the histogram for labels and
predictions. The prediction of the models are reasonable although it does not entirely fit the
distribution of labeled edge position . (b) is the absolute error value histogram, it counts the typical
error event distribution of the neural nets. Ideally we would want it to be sharply clustered around 0
but it spreads to more than 15, so there are a lot outliers. (c) average error distribution in terms of
edge position. It is clear that main error comes from the region from 700-950 where the damage
spot screwed up the SACLA user analyzer. We did not really circumvent this physical problem with
neural nets. The damage spot is a damage spot after all. The large error around 1200 is due to the
few number of shots there. In figurdd| the damage spot(very bright and sharp next to the darker
region) is clearly visible in the false positive crystal image. This explains why the average error
distribution between 700 -950 are bad although shots that land the edge in that region are abundant.
The normalized intensity profile of the same false positive image is displayed on the right panel of
figurd5] with the labeled edge and predicted edge off by more than 30, from figuref]it is clearly in the
outlier region. It shows indeed that the false negative produced by the discriminator tend to behave
bad on the regression neural nets.

TABLE 1: Confusion Matrix
H True Label False Label

True Prediction 35 67
False Prediction 5 283

6 Conclusion/Future Work

We obtained two trained neural networks that could be used to calibrate timing jitter between X
ray pulse and laser pulse at SACLA, a discriminator for good and bad encoding, and a regression
machine that returns the edge position pixel number. The false negative out of the discriminator
tends to behave bad in the edge finding step, so in the future we need to reduce its proportion by
increasing false labeled data. In terms of image regression, the profiles affected by damage spot
should be reconsidered more carefully if high time resolution is desired. As we get more beamtimes,
we can always use the same working pipeline to continue training the neural network as the machine
possibly drifts on the year scale. This would allow us to focus on more nontrivial beamtime tasks and
benefit other users.

7 Contributions

Yijing Huang: Data processing and labeling, analysis. Viktor Krapivin: Hyper parameter tuning ,
implementation on AWS server, analysis. Both group members contributed equally to model design.

References

[1]K. Nakajima, Y. Joti, T. Katayama, S. Owada, T. Togashi, T. Abe, T. Kameshima, K. Okada, T. Sugimoto, M.
Yamaga, T. Hatsui, and M. Yabashi, J Synchrotron Rad 25, 592 (2018).

[2] N. Slater, Github (2016).
https://gist.github.com/neilslater/40201a6c63b4462e6c6e458bab60d0b4d

https://gist.github.com/neilslater/40201a6c63b4462e6c6e458bab60d0b4

Figure 1: (a)Typical image of a successfully encoded shot. Red line shows the edge position.(b)
Intensity projection of 2D image onto horizontal direction, here shows X ray on curve(orange) and
the X ray off curve(blue). Dividing the X ray on trace with X ray off trace , and we get normalized
intensity projection as shown in (c) for several different images. The sharp rise is then fit with an
error function.

Discriminator

3) (10) (10) (10) True/False
Regression
v 1] 1 3
[ConvZD] [ConvZD] [ConvZD] [ConvZD] [Dense(40)] [Dense(ﬁ)]

BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm
DropOut DropOut DropOut DropOut DropOut DropOut
T T T T T L

Figure 2: The Discriminator flattens the image and put it into 4 dense layers. The image regression
machine uses 3 convolutional neural nets followed by three densely connected neural nets.

Encoded position

—— train
—— dev

o 200 400 600 800 1000 [50 100 150 200 250 300 350

Figure 3: Left: This is the loss from the training of the transfer discriminator. Right: loss function of
the edge position regression.

. label
W prediction

70 4

(b)

number of shots
number of shots

900 1000 1200 0 5 10 30 35

edge position

- ||| '

—10 1

|abel-prediction error

—20 -

700 800 900 1000 1100 1200
edge position

Figure 4: (a) histogram of edge position labeled and predicted. (b) distribution of absolute error
between prediction and label. The error above 25 is rare. But considering that SACLA initial
comissioning was aiming for error between two algorithm as small as 1 pixel, this is not ideal. This
comparison included recycled images. (c) prediction error(label value -prediction value) as a function
of edge position.

-31.8919677734375

false negative
w : o

100 4 — data
labeled edge

0 500 000 00 —— predicted edge
1 15 L1251 p g

0 250 500 750 1000 1250 1500 1750 2000

Figure 5: Left: This matrix indicates the type of errors that the transfer trained discriminator outputs.
Right: this is a histogram of predictions of the transfer trained model versus the original labels.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions

