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Introduction 
Convolution neural networks (CNN’s) can provide more accessible healthcare to underserved regions. One 
possibility is a model that can detect skin cancer from pictures taken by a smartphone. Skin cancer is the 
most common type of cancer in the United States with about 5.4 million new cases every year [1, 2]. The 
most dangerous are melanomas that account for approximately 75% of all skin-cancer-related deaths with 
over 10,000 deaths annually in the United States. Early detection and treatment are critical as the 
estimated 5-year survival rate for melanoma drops from over 99% if detected in its earliest stages to about 
14% in its latest stages [3]. However, according to IMS Health, there are only 9,600 dermatologists and 
7,800 dermatology practices to serve 323 million people in the United States [4]. Therefore, a skin cancer 
detection system would be valuable, especially to those who do not have easy access to dermatologists.  
 
Related Work 
In 2017, Esteva et al. [5] presented a CNN classifier that performed as well as dermatologists in identifying 
malignancies from skin lesion images. The model used a pre-trained Inception v3 CNN that was fine-tuned 
on 129,450 skin lesion images with 757 training classes. The model was then tested on two binary 
classification tasks: keratinocyte carcinomas (most common cancer) versus benign seborrheic keratoses; 
and malignant melanomas (deadliest skin cancer) versus benign nevi. The area under the curve (AUC) for 
both tasks was around 0.95 and the model outperformed the average of 21 dermatologists, 
demonstrating the effectiveness of deep learning in healthcare.  
 
Other studies showed similar results in comparing CNNs to dermatologists in classifying skin lesions. 
Brinker et al. [6] used ResNet50 and trained on 12,378 open-source dermatoscopic images to outperform 
136 dermatologists. Han et al. [7] used ResNet152 to classify 12 skin diseases from datasets with different 
patient demographics, Asian and Caucasian. The model was found to be sensitive to demographics (skin 
color), but the performance was still comparable to that of 16 dermatologists.  
 
Model Pruning  
CNN’s, however, have non-trivial requirements that may not be available in resource limited regions. The 
model Inception v3 contains 21 million (M), ResNet50 23M, and ResNet152 58M parameters. These 
models usually require large memory and GPU to train and deploy. Because of their size and computation 
requirements, they may not be effective on mobile devices, such as smart phones.  
 
To make models more efficient, they can be pruned to remove redundant model parameters that are not 
sensitive to the model’s performance. In Han et al. [8] pre-trained networks were pruned of low-weight 
connections to create more sparse models. The models were then retrained to learn the final weights on 
the remaining sparse connections. AlexNet was pruned from 61M to 6.7M parameters and VGG-16 from 
138M to 10.3M parameters while maintaining predictive performance.   
 
This project explored using the CNN’s Inception v3, ResNet50 v2, ResNet152 v2, and the smaller Mobile 
Net v2 on the open-source HAM10000 dataset [9] to classify skin lesions as benign or malignant. The 
models were pruned using Keras [10] to create more sparse models that may be easier to deploy on 
mobile devices for use in resource-limited regions.  
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Dataset and Features 
The data used in this project was from the HAM10000 dataset [9], which consists of 10,015 dermatoscopic 
images of common pigmented skin lesions. There were seven classes that include a representative 
collection of all important diagnostic categories in pigmented lesions: actinic keratoses and intraepithelial 
carcinoma / Bowen's disease, basal cell carcinoma, benign keratosis-like lesions (solar lentigines / 
seborrheic keratoses and lichen-planus like keratoses), dermatofibroma, melanoma, melanocytic nevi, 
and vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage). The seven 
classes can be grouped as benign or malignant as shown below with sample images.  
 

Benign  

 
Benign keratosis-like 

lesions 

 
Dermatofibroma 

 
Melanocytic nevi 

 
Vascular lesions 

Malignant  

 
Actinic keratoses 

 
Basal cell carcinoma 

 
Melanoma 

  
The data was imbalanced with only 20% (1,954) being malignant and the rest benign. The data was 
manually balanced by selecting all 1,954 malignant images and 1,954 random benign images for a total 
dataset of 3,908 images. The data was then split 60%, 20%, 20% into train, validation, and test sets with 
batch size 16 and resized to two resolutions: 224 x 224 pixels to be compatible with Mobile Net v2, 
ResNet50 v2, and ResNet152 v2 and 299 x 299 pixels to be compatible with Inception v3.  
  
Methods 
Since our skin lesion dataset was small, models that have been pre-trained on ImageNet with 1.28 million 
images for 1,000 object classes were used [11]. Specifically, Inception v3, ResNet50 v2, and ResNet152 v2 
were tested as they were used in other studies to classify skin lesions. Mobile Net v2 [12] was also included 
to evaluate the performance of a much smaller model in comparison to the other models that have at 
least 9 times more parameters. For the pre-trained models, the final classification layer was replaced with 
a binary classification layer with a sigmoid activation function to output probabilities for our binary 
classes, benign and malignant. The Adam optimizer was used for gradient descent to update model 
parameters during training. 
 
To maximize the performance of the models on classifying skin lesions, two factors were experimented 
with: the number of layers to freeze with preset ImageNet parameters and the learning rate. With small 
datasets, it is helpful to use transfer learning and extract parameters that have been pre-trained on a 
larger dataset [13]. However, if the dataset is very different, the parameters would also need to be trained 
on the target dataset to reduce bias. This concept was explored by freezing different layers and changing 
the number of trainable parameters for Mobile Net v2 and Inception v3 models. Different learning rates 
were also tested for all four models to obtain the best performance. 
 
Performance was measured by evaluating the AUC on the test set. The AUC is the area under the receiver 
operating characteristic (ROC) curve and it indicates how good the model is in distinguishing between 
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classes. Generally, the larger the AUC is for a model, the better the model’s performance is across different 
threshold levels (which trades off sensitivity and specificity) along the ROC curve. This also makes the AUC 
a more reliable metric than accuracy, as the latter can be deceiving with imbalanced data.  
 
After high prediction performance was achieved, the models were pruned at sparsity 25%, 50%, 75% and 
90%. The models were then retrained on the training set so the remaining parameters can fine-tune their 
weights to the new sparse network. The models’ performances were then evaluated again against the 
test set.  
 
Google’s Tensorflow v1.1.5 deep learning framework was used to train, validate, and test the models with 
Google Cloud and NVIDIA Tesla P1000 GPU. 
 
Experiments/Results/Discussion 
Freezing Layers  
Details of the four models used to classify skin lesions are shown in the table below.  

Model # of Layers Trainable 
Parameters  

Non-trainable 
Parameters 

Total Parameters  

Mobile Net v2 157 2,225,153 34,112 2,259,265 

Inception v3 313 21,770,401 34,432 21,804,833 

ResNet50 v2  192 23,521,409 45,440 23,566,849 

ResNet152 v2 566 58,189,953 143,744 58,333,697 

 
These models were initially pre-trained on 
the ImageNet dataset and contained preset, 
learned parameters. However, as our skin 
lesion images were very different from those 
of ImageNet, various degrees of freezing 
layers (i.e., keeping the preset, ImageNet-
learned parameters) were tested to 
determine the number of layers that should 
be trained on our skin lesion dataset. 
Different layers of Mobile Net v2 and 
Inception v3 were frozen from the bottom-up 
and the figure on the right shows the % of layers and number of parameters (NP) trained on the skin lesion 
data and the resulting test AUC scores. 
 
When only the top classification layer was trained (~1% of layers), the test AUC’s were relatively low for 
both models. As more layers were unfrozen and made trainable, the AUC’s increased, then decreased, 
and then increased again to maximum AUC’s of 0.876 and 0.857 for Mobile Net v2 and Inception v3, 
respectively, when all layers were trained on the skin lesion data.  
 
This trend in AUC highlights the large difference between our skin lesion images and those of ImageNet 
as well as the complexity of the Mobile Net v2 and Inception v3 models. To reduce bias error on our task, 
it is more beneficial to not use the preset ImageNet weights, but to train all the parameters on the skin 
lesion data. In addition, the dip in AUC’s at 94% and 68% of layers trained for Inception and Mobile Net 
v2, respectively, may be due to the models’ architecture and the interdependencies of the lower layers. 
Since lower layers learn low-level features like colors and edges, “interrupting” lower layers by having 
some trained on ImageNet and others trained on skin lesions may disrupt the learning process and result 
in lower performance. 
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Learning Rates 
The default learning rate of 1e-03 was used to 
test various degrees of freezing layers, but other 
learning rates were also tested for all four 
models (with all layers trained) as shown in the 
right figure. The figure highlights the importance 
of learning rate on performance. At the default 
learning rate of 1e-03, Mobile Net v2 had the 
best test AUC at 0.876 and ResNet152 v2 the 
worst at 0.801. Decreasing the learning rate to 
1e-04, however, resulted with Mobile Net v2 
being the worst performer with an AUC of 0.883 
and ResNet152 v2 being the second best with 0.905, a 13% increase. Learning rate 1e-04 provided the 
maximum AUC for all models with Inception v3 having the highest at 0.925. Smaller learning rate 1e-05 
may have taken too long to converge on an optima while larger learning rates 1e-03 and 1e-02 may have 
been too big and skipped over optimas.  
 
Test Evaluation 
The four models had the best performance when all layers were trained on the skin lesion data with 
learning rate 1e-04. A summary of the models’ performance on the test set and the percent of test data 
that were classified as true positive, true negative, false positive, and false negative is shown in the table 
below. Since this task involves classifying skin lesions as benign or malignant with high risks in missing 
positive cases (false negative), we are interested in high sensitivity and few false positives. All four 
models reported sensitivity to be higher than both accuracy and specificity, with Inception v3 having the 
highest sensitivity at 87.0%. In addition, of the incorrect classifications made, a majority of them were 
false positive than false negative; most errors were in classifying skin lesions as malignant when in 
actuality they were benign, which is the lower risk error.  
 

 
 

A further breakdown of the incorrect classifications is shown in the figure below. The top row indicates 
the percent of the test set that belongs to a specific class, such as 51% of the test set is benign and 28% 
is melanoma. The other rows show that of the incorrect classifications made by a model, the percent 
that belongs to a specific class. This figure allows us to see if there are certain classes that are 
unproportionally misclassified by the models. As previously mentioned, more benign than malignant 
examples are misclassified with unproportionally high errors with benign keratosis-like lesions. Of the 
malignant examples, the models appear to have unproportionally low errors with basal cell carcinoma, 
indicating that the models may be better at detecting this type of malignant skin lesion than melanoma 
or actinic keratoses.  



CS 230 – Final Project Report 
Daniel Jun 

 
Pruning 
After high performance was achieved, the 
models were pruned at sparsity levels 0.25, 
0.50, 0.75, and 0.90. The right figure shows the 
test AUC performance against sparsity (top) and 
number of non-zero parameters (bottom).  
 
As sparsity increased (and number of non-zero 
parameters decreased), the test AUC remained 
relatively stable for the larger models. For 
ResNet50 v2 and ResNet152 v2, the 
performance actually peaked at sparsity 0.25 
and 0.50, respectively. This highlights the 
redundancies of parameters in large networks 
(as shown in Han et al. [8]) and their tendency 
to overfit on the training and/or validation data.  
 
Increasing sparsity on the smaller Mobile Net 
v2, however, significantly decreased its 
performance. This shows that Mobile Net v2 is 
an already compact and efficient model with 
small redundancy in parameters. In addition, 
when the larger models are made sparse to 
have similar number of non-zero parameters as Mobile Net v2 (around 2M), Mobile Net v2’s performance 
is much better than those of Inception v3 and ResNet50 v2. Therefore, in terms of making the most 
efficient CNN’s, it may be more useful to create an efficient CNN from scratch as opposed to starting with 
a large network and then pruning it to a smaller network.  
 
Conclusion/Future Work 
Four pre-trained CNN’s were explored to classify skin lesions as benign or malignant from the open-
source HAM10000 dataset. The models Mobile Net v2, Inception v3, ResNet50 v2, and ResNet152 v2 
were evaluated at different degrees of freezing layers and learning rates to find the best performance. 
The models were then pruned at different sparsity levels and their performance were reevaluated. For 
the large models Inception v3, ResNet50 v2, and ResNet152 v2, the performance were retained even at 
0.75 sparsity. For the already small model Mobile Net v2, performance decreased quickly with sparsity. 
However, Mobile Net v2 at 0 sparsity still had fewer number of parameters and better performance 
than the most pruned versions of the larger models. For future work, it would be interesting to apply 
quantization on the pruned models to compress their size even more.  
 
Contributions  
Daniel Jun is the sole contributor to this project.  
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