CS230

Automatic Speech Recognition for Childhood
Language Development

Daniel P. Ryan
Department of Computer Science
Stanford University
dryan2@stanford.edu

1 Problem Description

Language development problems have been known to occur in up to 25% of young children.[1]
Although this is typically just the normal variation in childhood development, it is often a source of
frustration for both the parents and the child. Also common with young children, is an attraction
to handheld computing devices and digital images. In this paper, we propose an Automatic Speech
Recognition (ASR) implementation that provides a fun, interactive tool for language development.
As the child speaks into the device, the algorithm identifies potential word matches and displays
images associated with those words. When the child completes a word, the image associated with
the successful word is displayed along with the word itself. If no word is identified, the process
starts over. We anticipate that potential word matches will be obtained from a word bank of simple,
common words, and that this word bank can be expanded as a child’s language progresses. The
input to the algorithm will be spoken audio and the output will be a list of potential words and their
associated confidence scores.

Figure 1: Pictorial of ASR tool for language development

Due to time and resource constraints, the full implementation of this tool has not been realized on
this project. The word detection cannot yet be performed with "live" audio, rather pre-recorded audio

CS230: Deep Learning, Spring 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



must be passed to the model. Additionally, when keywords are recognized, images associated with
those words are not displayed to a user. Rather, a time series of integers representing the keywords is
output to a file. The developer can then lookup the keyword associated integers in a word bank and
compare to the expected output.

Some of the challenges associated with this tool are that the model must be robust enough to be able
to accommodate children’s limited verbal skills and ability to properly enunciate words. Additionally,
audio quality may be a challenge that will have to be overcome. If implemented, one could imagine a
child holding the device in such a way that the microphone was obstructed, dramatically reducing
audio quality.

2 Dataset

Our originally selected dataset, the Open Speech and Language Resources (OpenSLR) LibriSpeech
SLR12 corpus [2], evaluated using the ESPnet end-to-end speech processing model, proved to be
unsuccessful. After spending many long hours attempting to execute the ESPnet model, our efforts
were unsuccessful. Furthermore, while the LibriSpeech dataset represents a large corpus of data
suitable for a general purpose speech recognition model, the model for our application is reflective
of a much more specific purpose. Rather than having the ability to identify thousands of words, our
model only needs to recognize a very small sample of words, on the order of tens of words. For
these reasons, we have chosen to build our dataset from the Tensorflow Speech Commands dataset
[3], specifically designed for keyword spotting systems. The dataset consists of 100,000 utterances
of 35 words, with each utterance stored as a 1 second, or less, WAVE formatted file. Additionally,
a few larger samples of background noise are provided. From this, we selected 6 words that we
would consider positive keywords (bird, cat, dog, one, two, three), 6 negative words (bed, down, left,
seven, wow, yes), and 5 samples of background noise, 10 seconds in length. Similarly to how we
generated a dataset in the Coursera Trigger Word Detection programming assignment, each training
sample was generated by selecting one background sample and overlaying a random number of
positive words, and a random number of negative words. While the samples were being assembled,
we also created labelled output files. Whereas the Trigger Word Detection assignment only required
a binary labelling scheme, we now use a multi-class labelling scheme to identify the specific positive
word injected. The development and test datasets were manually generated by recording audio on
a Logitech webcam and hand labelling to provide a more representative sample of what would be
expected under real world operating conditions. Due to the amount of effort required to hand label
samples, these datasets were much smaller than the training dataset. The training set consists of 2000
samples while the development and test sets consist of 26 and 5 samples, respectively.

This approach provided a straightforward method to align the labels of the dataset at the word level,
as opposed to at the sentence level, as it is in the LibriSpeech dataset. This was an additional reason
that the Tensorflow dataset was selected for use.

3 Architecture

Primarily, this work will focus on implementing a unidirectional recurrent neural network (RNN)
model. RNNs are a powerful tool for sequential data and thus are a natural choice for analysis of
temporal data. While traditional neural networks assume that the inputs are independent of eachother,
RNNGs utilize the entire sequence of inputs to perform predictions. The following related literature
was also be utilized for inspiration and guidance: [3], [4], [S], [6], [10]



[

O 0, 0, 0
’ !
S » =) >0 >0=5—>0"

Unfold w w
U U U
xt X

Xy

t+1

<
<

o

K
£

\}

a

X

-1 t+1

Figure 2: Pictorial of Recurrent Neural Network[7]

As mentioned in the previous section, this work was modelled after the Trigger Word Detection
programming assignment and extended to accommodate mulit-class word labelling. The core of the
model was implemented with the Keras API running on the TensorFlow machine learning platform
(https://keras.io/about/). The model consists of an initial 1D Convolutional layer with a
window length of 15, a stride length of 4, and consisting of 196 filters. Following the Convolutional
layer are intermediate Batch Normalization, ReLu Activation and Dropout layers. The next layers
in the stack are two Gated Recurrent Units, representing the core of our RNN model. Each layer
is followed Dropout and Batch Normalization layers. Following that, is a Time Distributed Dense
layer with sigmoid activation and the number of units equal to the number of classes in our labelling
scheme. Finally, the last layer is a SoftMax Activation layer.

1D CONV GRU GRU TD Dense SoftMax

INPUT — — OUTPUT

Figure 3: RNN Model

The Softmax Activation layer provides our classification by outputting a value between 0 and 1 for
each of our word classification, effectively a probability that a specific word has been recognized.
The probabilities, including for the no word or unrecognized word, must sum to 1 at each point in the
time series.

SoftMax

(O— Plunrecognized)
(O— P(bird)
O—» P(cat)
(O—— P(dog)
(O—— Plone)
O—> P(three)
O—> P(two)

Figure 4: Softmax Activation


https://keras.io/about/

The primary parameters utilized to affect the training speed and accuracy are the batch size and
number of epochs to train over. The training stage of the pipeline takes these parameters as input and
allows us to iterate faster before running time-consuming training stages.

4 Results

Initial results show some promise, but also leave much room for improvement. The model provides
reasonable accuracy on both the train and development set, with values of around 90%. However,
these results are diminished because at most of the output samples in time there should be no word
detected. Although the model performs correctly in this respect, a better metric is does the model
predict the correct word when a word is detected. To get a better sense of how our model is performing,
we examined the samples in our testing set and displayed them graphically to determine where our
model was under-performing. Given that our test set was small, this manual process was not too
tedious. Looking at these results, we can now start to see the true performance of the model. We can
see that the model does a good job of not activating on the unknown words, and does activate on
several of the positive keywords. However, it does a poor job of identifying which keyword has been
detected and also fails to detect several other keywords.

signal Wave signal Wave.. signal Wave

SUNK” —

“one” “three” “UNK” “UNK” “UNK”

0 200000 400000 600000 800000 0 200000 400000 600000 800000 0 200000 400000 600000 800000

“three”

MW .
oW o
Noow s

-

o 0
0200 40 G0 B0 1000 1200 1300 0 200 400 60 B0 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Figure 5: Test Set Results

5 Analysis of Results

Based on the results shown in the previous section, it is clear that there is much room for improvement
in our model. It is possible that the model could benefit from more training. Our best model to date
ran for several hours on a GPU based machine but we were still seeing improvement in our training
accuracy we can assume that there is some marginal improvement to be made by longer training.
A more strategic approach may be to expand the training and development datasets and add more
varied examples. Both datasets are relatively small, by deep learning standards, and it is reasonable
to assume that a model trained on a larger dataset might perform better. Additionally, the training
dataset was very limited on the number of negative word examples provided, with only 6 used. In
practice, and in our development and test sets, the model should be expected to handle any number of
previously unseen words, or even word fragments or general sounds. Finally, we assume that our
model itself could be made larger and more complex by adding additional layers. Given that the
accuracy on our development set has not yet plateaued, we have not overfit to our training set and
increasing the size or complexity of the model should be a reasonable approach.

6 Discussion

Although we did not achieve the results we had hoped for with our model, this project was enlightening
in the challenges of Automatic Speech Recognition and the potential for deep learning applications.



In retrospect, our initial approach to work with a more complicated dataset (LibriSpeech) and to
attempt to get a complicated off-the-shelf model (ESPNet) to work was a mistake and cost us a lot of
time. Our time would have been better spent by first developing a very simple model of our own,
getting that model to function, and then working to improve that model.

7 Contributions

This project was completed individually by Daniel Ryan. Any open-source material that was used
has been documented in the code. The author would like to thank the CS230 teaching assistants, Jo
Chuang and Jonathan Lingjie Li, for their help and guidance throughout this project.

8 Github Repository

All code created for this project can be found at the Github repository linked below. The repository
contains all source code, the required data, and pre-built scripts to execute each stage of the pipeline.
For execution instructions, follow the README file.

https://github.com/dan-ryan21/cs230_ASR-for-Childhood-Language-Development
References

[1] Trubo, R. (2020, April 20). Helping Your Late-Talking Children. Retrieved April 20, 2020, from Grow by
WebMD: https://www.webmd.com/baby/features/helping-your-late-talking-children#1

[2] Panayotov, V., & Povey, D. (2020, April 20). LibriSpeech ASR Corpus. Retrieved from Open Speech and
Language Resources: https://www.openslr.org/12/

[3] Yu, D., & Deng, L. (2015). Automatic Speech Recognition: A Deep Learning Approach. New York:
Springer.

[4] Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., . . . Acero, A. (2013). Recent Advances in Deep
Learning for Speech Research at Microsoft. IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 8604-8608.

[5] Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649).
IEEE.

[6] Graves, A., & Jaitly, N. (2014, January). Towards end-to-end speech recognition with recurrent neural
networks. In International conference on machine learning (pp. 1764-1772).

[7] Britz, D. (2015, September 17). Recurrent Neural Networks Tutorial, Part 1 — Introduction to RNNs. Retrieved
from WildML: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part- 1 -introduction-to-rnns/

[8] Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., ... & Renduchintala, A. (2018).
Espnet: End-to-end speech processing toolkit. arXiv preprint arXiv:1804.00015.

[9] Warden, P. (2018). Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209.

[10] Graves, A., Fernandez, S., Gomez, F., & Schmidhuber, J. (2006, June). Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning (pp. 369-376).


https://github.com/dan-ryan21/cs230_ASR-for-Childhood-Language-Development

	Problem Description
	Dataset
	 Architecture 
	Results
	Analysis of Results
	Discussion
	Contributions
	Github Repository

