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Abstract

Automatic Music Transcription (AMT) is the process of computing the symbolic musical
representation of a musical audio recording. Out of the existing AMT solutions, none have
reached the human-level accuracy on this task of nearly 100%. Although the problem formu-
lation is simple, it requires a complex model to accurately detect individual notes from a noisy
signal. We propose an approach that transforms this task to sequential image classification
and leverages deep learning’s superior ability to learn the structure within images and across
sequences. Specifically, we constructed a bidirectional LSTM network with convolutional and
pooling layers in an attempt to symbolically classify audio representations of classical piano
music. Although we were not able to achieve passable performance, we believe our methods
are basically sound.

Introduction
Music transcription is a task with great potential to benefit from current methods in deep

learning; music transcription is formulaic, mundane, and crucial in professional music. An accurate
AMT tool would be able to take as input a session of acoustic piano playing and quickly convert it
into a MIDI file, as if the piano were a MIDI instrument. MIDI is a communications protocol used
in recording and synthesizing music, capable of storing parameters such as notation, pitch, and
clock signals for tempo. This MIDI file can easily be converted into a transcribed score, can easily
be shared with other musicians for collaboration, and can be edited in order to change individual
notes from the performance to improve a composition.

Related Work
Until recently, accurate AMT was nearly impossible. The first version of Anthemscore, a costly

tool for AMT, was released in 2015. In 2018, Google’s Project Magenta trained and open-sourced an
automatic music transcription tool with fairly impressive accuracy using a neural network consisting
of convolutional layers, fully connected layers, and bidirectional LSTMs. The tool achieves an F1
score close to 0.9 using a reasonable custom evaluation metric. The tool works well on simple music
and is more prone to err on music containing highly clustered chords. The goal of our project is to
use Keras build a network similar to that of Google’s Project Magenta, and ideally obtain similar
performance.

Data Set and Features
We used the MAESTRO dataset1, which contains over 200 hours of classical piano perfor-

mance from 2010 to 2018. The full dataset contains MIDI representations of the piano perfor-
mances aligned temporally within 3ms of the recorded audio. The uncompressed audio is 200GB
of 44.1–48 kHz 16-bit PCM stereo. To speed training, we used the MAESTRO data from 2018,
which contained waveforms and MIDI representations for 99 pieces of piano music.

1https://magenta.tensorflow.org/datasets/maestro
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Methods
For the remainder of the paper, we discuss how deep learning can offer an improvement over the

baseline through the use of a recurrent CNN. We provide an overview of our approach including
pre-processing, neural network architecture, and evaluation.

Designing A Neural Network
Learning MIDI directly from WAV data is extremely difficult, because MIDI is optimized for

ingestion by computer programs and WAV is highly unstructured—just a single piano note in
WAV format would create a nearly incomprehensible sequence of ones and zeros. However, we
can formulate the problem as image classification with some clever data processing. Specifically,
by performing signal processing on the WAV data and using a Python library to process the
MIDI data, we can produce a two-dimensional spectrogram which displays the power at different
frequency buckets over time as well as a corresponding two-dimensional set of labels indicating
which notes are “active” over time.

CNNs are a class of deep neural networks that are designed to perform particularly well in
image classification. Convolutional layers apply filters to an input to detect the presence of specific
features or patterns present in the original image, while pooling layers reduce the number of
parameters in the network. By formatting our spectrograms and labels as training pairs with fixed
dimension, we can perform image classification using a CNN. This approach has been employed
by other developers tackling the challenge of AMT.

Rather than treat the transcription process as a series of independent image classification
problems, we chose to use a recurrent CNN based on the insight that musical information is highly
contextual. In the presence of a noisy or complicated audio signal, an experienced human listener
will base their perception of a note on information from the few seconds before and after the note
in question is played. As such, we designed a model which utilizes bidirectional long short-term
memory (LSTM) cells to incorporate previous and future hidden activations in the learning process.

Data Processing
We designed a data pipeline to process the MAESTRO WAV and MIDI data in an efficient

and flexible manner. We used the librosa library to convert WAV files to spectrograms using the
constant Q-transform (CQT) (Figure 1), and we used the pretty_midi library to convert MIDI
files to pianorolls (Figure 2). We leveraged the full processing power of our virtual machine’s 4
CPU cores using Python’s built-in multiprocessing library. This allowed us to aysynchronously
convert all of the 2018 MAESTRO data within an hour. The numpy array representations of the
spectrograms and pianorolls were efficiently stored as hdf5 files for further processing. We note
that processed data used approximately 8 times as much disk space as the raw data.

After processing the data into .h5 files, there are several additional steps before we can feed
the data into our model. The 2018 data occupy roughly 200 GB (compared to the 64 GB of RAM
available to our p2.xlarge AWS instance), so they cannot be fed directly into our model. To enable
training on all of the data, we load one piece at a time into memory using a custom generator
function, and for each piece, we process it into batches of shape x : (32, 360, 288, 5, 1) and y : (32,
360, 88). This means each batch contains 32 sequences, each sequence contains 360 consecutive
slices, and each slice has dimensions 288 × 5 × 1 for the spectrogram and 88 for the 88 keys of a
piano (the 1 specifies the number of “color” channels for our first convolutional layer). The model
optimizer then requests these batches one at a time as needed.

Training
Once the data generation process was defined, we trained a recurrent CNN according to the

model outlined in Figure 3. We used kernel sizes of (20, 2) and pool sizes of (4, 2), LSTM hidden
layer sizes of 500 and 200, a recurrent dropout probability of 0.75 on the first LSTM layer, and
a sigmoid activation function to generate the ŷ for each time step. For training, we used a fixed
sequence length of 360 input pairs representing approximately 5 seconds of music, which we sampled
every 720 slices in order to speed up training over the large dataset. We used a fixed batch size
of 32 sequences per batch, and with a 0.5/0.25/0.25 train/dev/test split, we were able to train on
135 batches per epoch for a total of 4320 5-second sequences of music.
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Figure 1: Visualization of a spectrogram using Constant-Q Transform (CQT)

Figure 2: Visualization of pianoroll

We used an Adam optimizer and binary crossentropy loss, and experimented with a variety of
different hyperparameters, described in Discussion.

Results

Accuracy Evaluation
To quantify the accuracy of the model on our test data, we prepared the test data in a similar

fashion to our train data, the only differences being (1) that we used all slices, not just those
following note onsets, and (2) that we prepared pianoroll for evaluation of the CNN output rather
than for training of the CNN. With the aggregated output for a piece, we then used a custom
evaluation function in an attempt to quantify precision and recall in agreement with the human
ear.

The first step of our evaluation function is to reduce strings of consecutive 1s to a single 1
followed by 0s, thus preserving note onsets and ignoring note duration. We justify this because notes
on a piano decay quickly, which makes note duration more useful theoretically than practically,
and because our CNN is trained only on note onsets.

To calculate the precision of the output transcription of a piece, our evaluation function locates
note onsets in the output pianoroll and searches for the nearest note onset in the golden pianoroll
on the same key up to a distance of 0.6 seconds. It then reports as the loss for that note as follows:

loss =
min(|t− t′|, 0.6)0.8

0.60.8
,

where t is the time in seconds of the output note and t′ is the time in seconds of the nearest
ground truth note found. The total loss is the sum of loss for each note in the output pianoroll.
This approach encodes the assumption that a note that is reproduced a little bit early or a little
bit late is an inaccurate reproduction of that note, but the output of any other note is assumed
not to be an attempt at the intended note, and it probably would not sound good at all if it were!
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Figure 3: Diagram of our recurrent CNN model with bidirectional LSTM

To calculate recall, the output and golden pianorolls are swapped and the same function is
used. We use the F1 score as our final measurement of accuracy:

F1 = 2 · precision · recall
precision+ recall

.

We also implemented a separate evaluation function which takes into account note duration as
well as time of onset, where precision and recall are calculated by simply taking the intersection
of the output and golden pianorolls and normalizing it by the L1 norm of output or golden,
respectively.

Finally, we created a command for converting WAV to MIDI utilizing the pretty_midi library.
This command loads a set of model weights and executes the full forward-propagation process
to construct a MIDI file, which can be listened to on most personal computers. Although this
evaluation approach does not offer any rigorous accuracy metrics, it is the ultimate test of the
quality of any AMT tool.

Discussion
Despite our best efforts, we were not able to achieve reasonably good performance using a

custom model. We consistently ran up against the issue of loss plateauing prematurely at ap-
proximately 94%, with outputs heavily biased toward zero. Despite experimenting with models of
varying complexity and searching over multiple values for learning rate, decay, and batch size, we
were not able to overcome the issue of too many zeros. This issue could be caused by a number
of different problems with the training process—if no clear relationship between x and y can be
learned, the model achieves the lowest loss by making the bias terms extremely negative, thus
allowing the model to correctly guess the 78–88 necessarily inactive notes at any given time slice.

The most likely explanation for this issue is that our model was not built correctly for this
specific task and thus was not able to learn parameters well enough given its depth to overcome
vanishing gradients. While the relationship between x and y in this application is clear, and even
a non-neural model might be able to achieve passable accuracy, the task of a neural model is
to learn how to recognize a note’s harmonic series so that the several peaks in power from the
spectrogram are recognized as a single note. Whereas many image classification tasks involve
discovering localized objects and patterns in each layer, this task involves discovering patterns
spanning the entire input tensor. Due to our cursory understanding of CNN engineering, the
model we built was likely unable to capture this complexity.

Otherwise, we are confident that our approaches to data processing, training, and evaluation
are mostly sound, and we believe reengineering our deep model to more closely resemble the model
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developed by Magenta would yield promising results.

Conclusion
We were not able to reach our ideal F1 accuracy score of 0.95, but we are optimistic that our

methods are sound on a high level and offer new insight into the development of a practical AMT
solution. We also hope the learnings from our experiment are a testament to the solvability and
importance of the problem. We also suggest two primary directions for future development.

Next Steps
An essential step for development of our AMT tool in the short term is improving the model

design. In addition to experimenting further with the convolutional part of our model, there are
a couple higher level approaches we could take to catch up to Magenta’s solution in terms of
performance. First, we could simply use Magenta’s model as a baseline. Magenta’s work is open
source, so we have the luxury of augmenting their model with aspects of our previous approach
as well as some additional insights. For example, we theorize that a state-of-the-art AMT model
would be able to “hear” chords, in addition to each individual note, with the help of more advanced
feature extraction. We could also experiment with adding residual connections, providing a time
step’s ŷ as input to its neighboring LSTM cells, and augmenting, or noisifying, the data to make
the tool more robust to real-world input.

An ideal extension in the long term would be to extend the model to be able to transcribe
ensembles. While this is a much harder task, we are confident it is possible. This would involve
first recognizing which instruments are playing at any given time, identifying which notes belong
to which instruments, and passing it through a CNN with knowledge of different instruments—
ideally, a CNN trained only on that specific combination of instruments. Multi-channel audio
signals would help greatly with this challenge as well, because it would greatly aid the matching of
instruments to notes as well as the transcription of notes. However, most combinations of recording
technology and acoustic surroundings yield audio that is too noisy or percussive for reliable human
transcription, in which case we believe that reliable AMT is nearly impossible.

Contributions
Both authors designed the model through discussion and experimentation, and co-wrote the

final report. Aitan Grossman implemented and trained the model. Josh Grossman designed and
implemented the data pipeline.
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