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Abstract

Humans are very adept at understanding a lot of information about their environment using a small
number of primarily visual observations. We can quickly determine our relative position and plan
a path through a cluttered room from just a single viewpoint. However, artificial systems such as
robots still struggle to accurately and concisely extract relevant data from visual inputs. We propose
a model which uses an arbitrary number of visual observations to produces a dense embedding of
the environment, which can then be used to aid in important tasks for robots, namely mapping and
localization.

1 Introduction

One important requirement to allow a robot to perform useful tasks is the ability for it to perceive and store information
about its environment. We focus on visual inputs as they provide a very large amount of information but can be difficult
to effectively process. To solve the perception and understanding problem we use a Representation network, which
takes an arbitrary number of observations and outputs a dense embedded representation of the scene. Each observation
consists of both an RGB image and the pose from which it was observed.

The merit of this generated embedding is determined by how well it can be used to solve useful tasks. In
this paper, we used mapping and localization as the tasks which the system has to perform based on the scene
embedding. These are two important tasks which allow a robot to plan paths and maintain a sense of its position for
navigation purposes. To solve these two tasks, we use two more neural network models: a Mapping network which uses
just the scene embedding and generates a 2-dimensional binary map of the scene, and a Localization network which
takes the embedding and an image as input, and outputs the pose from which that image was taken. The binary map
produced by the Mapping network represents whether or not each pixel of the map is safe to traverse or is occupied by
an obstacle.

2 Related work

The specific tasks we approach in this paper (robot mapping and localization) have been studied extensively. These
problems are traditionally solved using SLAM (Simultaneous Mapping And Localization) techniques. Different SLAM
methods involve the use of Lidar, stereo vision, or simple cameras, but the popular methods are not performed using
artificial neural networks [1]. Traditional SLAM approaches can suffer from large memory costs due to storing an
increasing number of observations and key points [2]. Additionally, maps generated by visual SLAM techniques are
generally made up of landmarks that do not necessarily show the presence or absence of obstacles in a given location [3].

While we could not find examples of neural networks being applied to the exact tasks we approach, there
are somewhat similar tasks to which neural networks have been applied. The idea of a scene embedding was inspired by
"Neural Scene Representation and Rendering" [4]. This paper generated representations of a scene for the purpose of
rendering novel views of the scene. Another task which is somewhat similar to the mapping task is 3D reconstruction.
Some methods for this task use a convolutional encoder to produce a dense embedding of a visual observation [5].
This embedding is then used to find what areas are occupied by the object. In this way, our mapping task could be
analogously called "2D reconstruction."
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3 Dataset and Features

Our dataset consisted of a large number of synthetic scenes, where a scene s comprises a tuple (m,x,p). m is a 64x64
binary map, representing whether each pixel’s area is safe or occupied. x is a list of 64 128x128 RGB images of the
scene. p is a list of 64 poses which correspond to the images in x. Specifically pi represents the position of the camera
when xi was rendered. Each pose vector pi is a 7-dimensional vector where the first 3 components represent the
(x, y, z) position of the camera, the next 3 components compose a unit vector in R3 that represents the direction of the
camera, and the final component represents the roll of the camera around that unit vector.

We generated these scenes using PyBullet, a physics simulator with synthetic rendering capabilities [6]. The
scenes are 8x8 meters, with walls that enclose an axis-aligned rectangular space within the bounds of the scene. The
scene is also populated with randomly placed furniture models which were obtained from the IKEA Dataset [7]. The
colors of the walls, floor, and furniture were all randomized. In addition, the bounds of the walls within the 8x8 meter
scene were also randomized.

The map is 64x64, so each pixel represents a square of 12.5cm on each side. The map is generated by plac-
ing a cuboid bounding box over each pixel and checking for collisions with the furniture. If a collision is detected, the
given pixel is set to 0, meaning "unsafe" or "obstructed", otherwise it is set to 1 to signify "safe". The bounding box is
0.3 meters tall, which was chosen to approximately represent the height of Stanford Student Robotics’ "Pupper" robot
[8]. This means that locations which are underneath an obstacle such as a table but still have adequate vertical clearance
are considered safe in the map.

The images are rendered from random poses in unobstructed locations. The (x, y) location and yaw are cho-
sen randomly, and the z location, pitch, and roll are also varied uniformly within bounds designed to roughly
approximate the unsteady motion of a quadruped robot.

Figure 1: (left) A birds-eye view of a generated scene. (right) The corresponding map for the scene and 4 rendered observations with
their poses on the map. The map visual was made with matplotlib [10]. The darker pixels are labelled as unsafe while the lighter
pixels are labelled safe.

The original dataset had approximately 40,000 of such scenes (with 64 images each) for training data, and 600 scenes
each for a validation and test set. In later experiments, the training dataset was expanded to include approximately
60,000 scenes.

4 Methods

Models were built using NumPy [11] and Tensorflow 2 [12].

4.1 Tile Convolutional Encoder

In the implementation of both the Representation network and Localization network we face the problem of
combining both image inputs and dense vector inputs. In the case of the Representation network, we input both
images and pose vectors, and for the Localization network we input an image and the scene embedding vector. We
solve this issue in both cases using what we will call a Tile Convolutional Encoder. We use a MobileNetV2 [13]
convolutional architecture with weights pretrained on ImageNet as the base of the encoder. We chose this model

2



because of the availability of pretrained weights and the fact that it is optimized for use on mobile systems such as robots.

To incorporate the dense inputs, we take the vector input and repeat it 16 times over two axes so it becomes
a 16x16xN tensor where N is the original dimensionality of the dense input. For example, after tiling the
7-dimensional pose vector we would have a 16x16x7 tensor. This tiled tensor is then concatenated with the
output of the 5th block of the convolutional architecture, along the filters axis. We then apply a 1x1 convolution to
that output to decrease the number of channels so that it can be fed back into the remainder of the convolutional encoder.

Figure 2: Tiling is used to incorporate dense inputs into the convolutional architecture.

Figure 3: The complete Tile Convolutional Encoder

The idea of using tiling on dense inputs in an intermedi-
ate layer was inspired by open-source implementations
[14][15] of "Neural Scene Representation and Rendering"
[4].

The output of the encoder is calculated using a global
average pooling over the output of the last convolutional
block. Then this output is passed through a dense linear
layer with M units to achieve the desired output dimen-
sionality.

For more specifics on the base convolutional architecture, we recommend referring to "Mobilenetv2: Inverted residuals
and linear bottlenecks" [13].

4.2 Representation Network

Figure 4: The Representation network architecture

The Representation network is tasked with using a se-
ries of observations to generate an embedded representa-
tion. The model we developed uses a Tile Convolutional
Encoder with N = 7 (the size of a pose vector) and
M = 512 (the size of the embedding vector). We then
pass the output of the encoder into a GRU with 512 units
to output the final embedding. We chose the GRU be-
cause it has no extra hidden states besides its previous
output. This means that the system only needs to store the
current embedding in between observations. This embed-
ding it both used for the actual mapping and localization
tasks as well as creating the next embedding after a new
observation.

4.3 Localization Network

The Localization network takes an image as input as well as the current scene embedding, and outputs an estimate of the
pose from which the image was taken. The architecture is simply a Tile Convolutional Encoder with N = 512 (the size
of the embedding) and M = 7 (the size of a pose vector). The only processing applied to the 7 linear output units of the
encoder is that the 3 components which represent the orientation in the pose are normalized to make a unit vector in R3.
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4.4 Mapping Network

The Mapping network takes just the scene embedding and outputs a binary 2-dimensional map of the scene. We
considered different architectures for the mapping network including a deconvolutional architecture and one based on
Occupancy Networks [9]. Ultimately we chose a simple feed-forward, fully connected network. Because the output is
only 64x64 (4096 total pixels), it was feasible to use a fully-connected output and we did not need to rely on the parame-
ter sharing provided by deconvolutions. We also decided against an Occupancy Network-like approach because our map
labels are of a fixed resolution so we would gain nothing from the arbitrary resolution advantage of Occupancy Networks.

The final architecture for the mapping net consists of 5 dense layers with the following number of units:
1024, 2048, 2048, 2048, and 4096 in order from input to output. Remember that the input to this network is the
512-dimensional embedding vector. All of the hidden layers in this network used ReLU activation and the final output
layer used a sigmoid activation to produce the binary map. The 4096-dimensional output is reshaped to a 64x64 map.

5 Training

5.1 End-to-end Model

Figure 5: The end-to-end model

It would be impossible to train the networks separately,
as there are no ground truth labels for scene embedding
vectors. Instead, a scene embedding is considered "good"
if it can be effectively utilized for the other tasks.

Therefore, we trained the models in an end-to-end fashion,
optimizing the entire process of input images to map
and pose estimates. We calculate a loss function for the
map and pose estimates, and the gradients are propagated
back through the Mapping and Localization networks,
then through the scene embedding and Representation
network.

Figure 6: (right) A mask used to weight the
loss function for the map label (left). Lighter
pixels in the mask are weighted higher.

5.2 Loss Functions

For the mapping network we used a weighted version of per-pixel binary
cross entropy wherein pixels that are on the edges of obstacles are weighted
more highly. We chose this method to discourage the model from finding
a local minimum where each pixel just shows the average probability of
being "safe" over all training samples. This was inspired by [16].

The loss used for the Localization network was a combination of mean squared error and cosine similarity. We used
MSE for the position and roll components, and cosine similarity for the orientation unit vector. Different weights were
given to the components to prioritize good position estimates over good orientation estimates.

5.3 Preprocessing

The image inputs are preprocessed by normalizing the values between -1 and 1. For the pose inputs, the position and roll
components are normalized between -1 and 1 based on their minimum and maximum possible values. The orientation
component is already a unit vector and need not be normalized.

5.4 Training

We trained the end-to-end model over our training dataset of 60,000 scenes. Each time a scene was selected in a batch,
16 images would be randomly chosen as inputs to the representation network and 8 other images would be chosen
as inputs to the Localization network. We used an Adam optimizer with a learning rate of 10−4 and a batch size of
16 scenes. We trained the model for around 300 epochs over about a week. The exact number is unclear as some
adjustments were made over the course of training. The high length of training time was prohibitive for carrying out
multiple independent experiments.
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6 Results and Discussion

Below are some results from the test set, which was not optimized against in any way during training.

Table 1: Results from the test set. The right image in each pair shows the ground truth map as well as the given
observation points. The left images are the generated maps and localization results. Blue points are the true locations
and red points are the estimated locations of novel observations.

The results show that the generated representations are quite successful in capturing the dimensions of the room. The
generated maps also show a noisy interpretation of which areas of the room had more obstacles. The localization results
are inconsistent, with some estimates being very close to the ground truth while others show a larger error. Some of the
poorly estimated locations might be due to useless images that show just a flat wall. Because there is no texturing in the
scenes, it would be impossible to determine a precise location based on a flat color.

The quantitative metric that we chose for human interpretation is mean Euclidean distance in the (x, y) plane for
localization estimates. Over the test set, we found a mean Euclidean distance of about 3.52 meters. This may not be a
very accurate metric to determine viability in robotics applications, as this evaluation uses random observation and
estimation locations which is very unrealistic for a robot.

7 Conclusions and Future Work

Neural scene embeddings show promise for use in robotics applications. The embeddings have a very small memory
footprint (only 512 values) and are capable of capturing geometric and visual aspects of a novel scene in ways that are
useful for mapping and localization tasks. While the performance in these tasks stands to be improved, it was sufficient
to show the power of neural scene embeddings.

There are still challenges to overcome before our methods could be applied to actual robots. Real environments would
have much more complexity and variability than our generated scenes. It is possible that a model could take advantage
of the increased visual complexity by inferring depth from textures and direction from lighting, but processing these
complexities would be a much more difficult task. Additionally, collecting enough labeled data from real environments
would be very expensive.

8 Code

Code for this project can be found here: https://github.com/colin-r-schultz/CS230-Project
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