
Deep Learning: Project Final Report

Casey Long∗

Department of Computer Science
Stanford University

clong80@stanford.edu

Abstract

Deep learning neural networks aid in side channel cryptanalysis against AES-128
implementations running on an 8-bit RISC (AVR) CPU architecture.

1 Introduction

Power Analysis side-channel attacks correlate power consumption of crytographic operations to
estimate both a key value and its timestamp in a power trace. A trace refers to a set of power
consumption measurements taken across a crytographic operation. Often, this is depicted as an X-Y
plot, with current or voltage on the Y-axis and time on the X-axis.

A Simple Power Analysis (SPA) involves directly interpreting the visual trace. Because block cipher
encryption algorithms like AES are deterministic and public, correlating the power consumption to
certain crytographic operations can reveal execution and data path points of the algorithm. The role
of the crytographic engineer is to prevent leakage of crytographic operations in traces to an adversary.
Often, this employs the use of power reduction to minimizes signal strength or introduction of noise
to minimizes measurement strength.

More advanced power analysis side-channel attack takes advantage of large datasets of traces to
measure small variations of power consumption. These variations are not intuitively obvious and
differences are expressed in terms of covariances.

2 Background

A more thorough investigation of the AES-128 algorithm is deferred to other papers. The salient
points of the AES-128 algorithm important to this paper are expressed:

• There are four main functions; add_round_key, substitute_bytes, shift_rows, and
mix_columns. They are permutations of each other; i.e., they are chained together.

• The add_round_key and substitute_bytes functions are of particular interest to side-
channel analysis, and involve a bitwise XOR and constant-time table lookup, respectively.
This table is known as the Rijndael S-Box.

• substitute_bytes represents a non-linear mapping that breaks the 128-bit key produced
by add_round_key into 16 bytes, which serve as the index to the S-Box lookup. Because
of its non-linearity, it is difficult to alter or safeguard this function while preserving this
mapping. In addition to the small 8-bit index, substitute_bytes is a source of weakness.

∗Stanford CS230 student.

CS230: Deep Learning, Spring 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

During a DPA attack, an attacker targets a single 8-bit block. This is what gives DPA attacks their
strength; brute force complexity is reduced from O(2128) to O(16 · 28) ≈ O(28).

The key schedule for the AES-128 algorithm is provided.

Here is a general procedure of a differential attack.

• We assume a priori knowledge of the plaintext or ciphertext (or both) values for a fixed key
value and the algorithm used. Intuitively, this means we have access to the device under
attack (DUT), and are able to monitor the encryption or decryption process. This is possible
with things such as encrypted bootloaders where we can continually reset the device, or
commercial-off-the-shelf equipment that is not unique.

• We want to calculate the maximum likelihood estimate (MLE) for the key-byte. Because it
is only 8-bits, we can brute force this. Thus, we have 28 = 256 possible "classes" that we
can bin each estimate into.

• For each key estimate, we correlate it to the power trace. This correlation uses some leakage
function that maps the key-byte to a power intensity. A common choice for this leakage
function is the Hamming Weight. The intuition here, is that an "on" or "1" bit is related to
power consumption.

3 Related work

Many power analysis algorithms can provide an MLE. The ones discussed in this paper include
a Correlation Power Analysis (CPA), Linear Regression Analysis (LRA), a Multilayer Perceptron
(MLP), and a Convolutional Neural Network (CNN).

29 one of the most important works in the field of side-channel analysis. Published in 1996,
this seminal work introduces one of the first feasible concepts of statistical analysis of trace
datasets to attack a microcontroller, called a Differential Power Analysis. Many other power
analysis algorithms such as CPA and LRA are directly derived from this work. While DPA
in this work refers to a specific Difference of Means algorithm to measure differences, the
word "differential power analysis" is often interchangably used in any power analysis attack
that uses some statistical difference measurement to gain inference about the MLE key-byte.

28 introduces a Correlational Power Analysis.
26 introduces a Linear Regression Analysis.
• Additionally, a literature review indicates sucess using Support Vector Machines (SVM)

[14][15][16][17], Random Forests [17][18], Multilayer Perceptrons (MLP) [19][20][21],
and Convolutional Neural Networks (CNN) [22][23]. Due to relevancy of the last two in
deep learning, more attention will be emphasized there.

4 Dataset and Features

4.1 Description

The dataset consists of 60,000 AES-128 power traces extracted from ATMega8515 (AVR architecture)
microcontroller, partitioned into 10,000 test and 50,000 train cases. It is a time series dataset. Each
data point consists of three groups of information:

• traces: contains an index number, with a timestamp and raw power measurement
• labels: the AES substitution box (i.e., a Rijndael S-box) values. We denote S(p⊕ k) as the

substition box, where p is our plaintext value k is our key value.
• metadata: associated with every timestamp is the truth values for the plaintext, ciphertext,

key, and mask used during that timestamp. A mask is an obfuscation technique to protect
AES implementations by randomizing the intermediate results, thus creating noise to power
traces. Not all traces are masked.

This 5Gb dataset is freely available from the National Cybersecurity Agency of France (Agence
nationale de la sécurité des systèmes d’information, ANSSI). The ANSSI Side Channel Attack

2

Figure 1: snr4
3

Database (ASCAD) is in HDF5 format, which can be parsed with Python’s hdf5 package. ANSSI
developed this database with the intention of it becoming a MNIST-like library for side-channel
attacks. Support for Keras, Tensorflow, and GPU acceleration is provided.

4.2 Dimensionality Reduction

According to the Nyquist-Shannon sampling theorom, the measurement frequency must be higher than
the measured device under attack frequency (i.e., the clock rate). Often times, measurement frequency
may be in the GHz range for microcontrollers in the MHz. This is often due to the resolution required
for a certain attack and the low power emitted from such devices that make useful measurements
sparse, and most measurements noisy. [] lists various dimensionality reduction techniques to hone
in onto Points of Interest. These include Difference of Means based methods (DOM), Sum of
Sqaured Differences (SOSD), Correlation Power Analysis based methods (CPA), Sum of Squared
pairwise T-differences (SOST), Signal-to-Noise ratio (SNR), Variance based methods (VAR), Mutual
Information Analysis (MIA), and Kolmogorov-Smirnov Analysis (KSA), and Principal Component
Analysis (PCA).

The SNR method was chosen as the ASCAD authors also used this method. The SNR is generally
defined as,

SNR =
Signal

Noise
(1)

In this paper, it is specifically defined as

SNR =
σx̄ − µx̄
µσ2

(2)

Intuitively, the numerator represents the difference in the mean of different class means and the
variance of those average means, while the denominator represents the mean of the variances. The
graph show is the result, and is a replication of what ASCAD similarily produced. The range of
[45400, 46100] was chosen because leakage model functions snr4 and snr5 were too simple. Their
representations are easy to spot. The function snr1 was not able to be seen, as this was considered a
cryptographically secure implementation with no first-order leakage (i.e., simple linear attacks will
not be sufficient for predicting key byte values).

5 Methods

A Correlation Power Analysis and Linear Regression Analysis were used to baseline the model.
This was to help compare the MLP and CNN models to older and more traditional models to give
perspective on their effacacy.

• CPA: The CPA is a collary of the Pearson correlation coefficient:

ρX,Y =
cov(X,Y)

σXσY
(3)

=
N

∑
TriHi −

∑
Tri

∑
Hi√

N
∑
Tr2

i − (
∑
Tri)2

√
N

∑
Hi − (

∑
Hi)2

(4)

where Tri is our trace at sample index i, s.t. i ∈ {0, ..., Ntraces} and Hi is short-
hand for HammingWeight(sbox(Pi ⊕ Ki)) Intuitively, we are trying to map the raw
power intensity to the Hamming Weight of the bits produced by the add_round_key and
substitute_bytes functions.

• LRA: An LRA is conceptually similar to any other linear regression. We are trying to fit
our key-byte classes to a spline, instead of a fixed dimensional polynomial. In this case,
we create basis functions in the matrix M . The mathematics behind these functions delve
more into crytography and finite fields, so we won’t delve into that rabbit hole. The big
take away is that we create a coefficient matrix that we can apply to our trace data. These

4

splines represent a fit approximation to each of the 256 classes that 8-bit target key byte can
represent.

M =

sbox(Pi ⊕Ki)
b1
1 . . . sbox(Pi ⊕Ki)

bt
1

...
. . .

sbox(Pi ⊕Ki)
b1
N sbox(Pi ⊕Ki)

bt
N

 (5)

β = (MTM)−1MTTr (6)

The goodness of fit measure is a scalar representation from {0, ..., 1} of how close a
measurement value from Tr is to our model M · β

R2 = 1−
∑

(Tr −Mβ)2∑
(Tri − T̄ r)2

(7)

= 1− ||Tr−M · β||
σTr

(8)

• MLP: The MLP used has a total of 6 layers used. The first input layer consists of 700 notes–
this is due to the Point of Interest interval of [45400, 46100]. This input layer represents the
power intensities for that given time range. The next four layers are hidden layers of 200
nodes each. The final output layer is 256 node layer, representing the MLE prediction of
the byte. (i.e., it’s predicting each individual bit) A categorical cross entropy loss function
was used. This was because the categorical cross entropy loss function weights the true
"class" (our byte) with a value of 1.0, and all other classes of 0.0. This is useful because
crytography has to have a deterministic and exact key-byte value; we would like to weight
non-true answers as low as possible. The activation function for the four hidden layers was
ReLu, with a softmax activation for the final layer. The optimizer was RMSProp–no specific
reason why this was chosen. The number of nodes and hidden layers seem to have a more
disceranable impact on performance for these side-channel attacks, as discussed in. A great
deal of time was instead devoted towards comparing MLP to other older/traditional methods
of inference. The results are shown.

6 Experiments/Results/Discussion

First-order side channel attacks are those that exploit differences in means. . A Linear Regression
Analysis (LRA) and a Correlation Power Analysis (CPA) are examples of first order attacks. An
attack implementation of the leakage functions snr4, snr2, snr1 is provided. While no graphs were
provided in the ASCAD paper to reference, the qualitative descriptions coincide with the results I
achieved. Mainly, that in terms cryptographical secureness, snr1 precedes snr2, which precedes snr4.

In these graphs, the grey represents an overlay of the estimated attack traces (the 256 key byte
guesses). The green, purple, or blue represents the MLE key byte. The red represents the correct key
byte if the MLE key was guessed incorrectly. It should not be surprising that the attacks on snr1 do
not converge. It was deemed a crytogrpahically secure implementation on the 8-bit microcontroller
with no first-order leakage. You can easily see that there are no big spikes like there are in snr2
or snr4, and most of the blue represents consistently within the gray attack traces, indicating its
operation for correct/incorrect key values is consistent.

The MLP result is more telling. In snr4 it quickly converges towards the solution in one iteration.
Even more surprising, the previous stronger snr1 leakage function was able to be broken and the key
correctly guessed.

5

Figure 2: snr4

Figure 3: snr4

6

Figure 4: snr4

7

7 Conclusion/Future Work

Unfortunately running out of time to do more work on the CNN. This project was quite a bit of work,
delving into more details of Crytography and Machine Learning! It was a good learning experience,
but the scope of this project is far to large for a single course.

References

[1] Szefer, J. (2018) Principles of Secure Processor Architecture Design. In Martonosi, M. & Hill, M.D. (eds.)
Synthesis Lectures on Computer Architecture. pp. 10.

[2] Lee, R.B., Kwan, P., McGregor, J.P., Dwoskin, J. & Wang, Z. (2013) Security Basics for Computer
Architects. Synthesis Lectures on Computer Architecture. 8(4) pp. 1-111.

[3] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y. &
Hamburg, M. (2018) Meltdown: Reading Kernel Memory from User Space. 27th USENIX Security Symposium,
Baltimore, MD, USA, August 15-17, 2018.

[4] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., Schwarz, M. & Yarom, Y. & Hamburg, M. (2019) Spectre Attacks: Exploiting Speculative
Execution. 40th IEEE Symposium on Security and Privacy (S&P’19).

[5] Szefer, J. (2018) Principles of Secure Processor Architecture Design. In Martonosi, M. & Hill, M.D. (eds.)
Synthesis Lectures on Computer Architecture. pp. 27-29.

[6] Department of Homeland Security, National Cyber Awareness System. (2018) Alert (TA18-004A) Meltdown
and Spectre Side-Channel Vulnerability Guidance. https://www.us-cert.gov/ncas/alerts/TA18-004A
Original Release: January 4, 2018. Revised May 01, 2018. Retrieved April 25, 2020.

[7] Graz University of Technology. (2018) Meltdown and Spectre Vulnerabilities in modern computers leak
passwords and sensitive data. https://meltdownattack.com/faq-advisory Retrieved April 25, 2020.

[8] Intel. (2018) Advancing Security at the Silicon Level https://newsroom.intel.com/editorials/
advancing-security-silicon-level/#gs.4hdzye Original Release: March 15, 2018. Retrieved April
25, 2020.

[9] Microsoft. (2018) ADV180002 | Guidance to mitigate speculative execution side-channel vulnerabili-
ties. https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180002 Orig-
inal Release: January 3, 2018. Revised June 14, 2019. Retrieved April 25, 2020.

[10] The Linux Kernel. (2020) Hardware vulnerabilities, Spectre Side Channels https://www.kernel.org/
doc/html/latest/admin-guide/hw-vuln/spectre.html Retrieved April 25, 2020.

[11] Bursztein, E. & Picod, J-M. (2019) A Hacker Guide to Deep Learn-
ing Based Side Channel Attacks. Defcon27 https://elie.net/talk/
a-hackerguide-to-deep-learning-based-side-channel-attacks/ Retrieved April 25, 2020.

[12] Benadjila, R., Prouff, E., Strullu, R., Cagli, E. & Dumas, C. (2019). Deep learning for side-channel analysis
and introduction to ASCAD database. Journal of Cryptographic Engineering.

[13] Cagli, E. (2018). Feature Extraction for Side-Channel Attacks. Cryptography and Security [cs.CR]. pp.
37-39. Sorbonne Université.

[14] Bartkewitz, T. & Lenke-Rust . (2013) Efficient Template Attacks Based on Probabilistic Multi-class Support
Vector Machines. In Mangard, S. (eds.), Smart Card Research and Advanced Applications CARDIS, volume
7771 of Lecture Notes in Computer Science. pp. 263-276. Springer Berlin Heidelberg.

[15] Heuser, A. & Zohner, M. (2012) Intelligent machine homicide-breaking cryptographic devices using support
vector machines. In Schindler, W. & Huss, S. A. (eds.) Constructive Side-Channel Analysis and Secure Design -
Third International Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings, volume 7275
of Lecture Notes in Computer Science. pp. 249-264. Springer.

[16] Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I. & Vandewalle J. (2011) Machine learning in
side-channel analysis: a first study. J. Cryptographic Engineering. 1(4) pp. 293–302.

[17] Lerman, L., Bontempi, G. & Markowitch, O. (2014) Power analysis attack: an approach based on machine
learning. International Journal of Advanced Computer Technology. 32 pp. 97-115.

[18] Lerman, L., Poussier, R., Bontempi, G., Markowitch, O. & Standaert, F-X. (2015) Template attacks vs.
machine learning revisited (and the curse of dimensionality in side-channel analysis). In Mangard, S. (eds.),

8

https://www.us-cert.gov/ncas/alerts/TA18-004A
https://meltdownattack.com/faq-advisory
https://newsroom.intel.com/editorials/advancing-security-silicon-level/#gs.4hdzye
https://newsroom.intel.com/editorials/advancing-security-silicon-level/#gs.4hdzye
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180002
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://elie.net/talk/a-hackerguide-to-deep-learning-based-side-channel-attacks/
https://elie.net/talk/a-hackerguide-to-deep-learning-based-side-channel-attacks/

Constructive Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture Notes in Computer Science. pp.
20-33. Springer.

[19] Martinasek, Z., Dzurenda, P. & Malina, L. (2016) Profiling power analysis attack based on MLP in DPA
contest V4.2 In 39th International Conference on Telecommunications and Signal Processing, TSP 2016, Vienna,
Austria, June 27-29, 2016. pp. 223–226. IEEE, 2016.

[20] Martinasek, Z., Hajny, J., & Malina, L. (2015) Optimization of power analysis using neural network. In
Francillon and Rohatgi, pp. 94–107.

[21] Martinasek, Z., Malina, L. & (2015) K. Trasy. Profiling Power Analysis Attack Based on Multi-layer
Perceptron Network. Computational Problems in Science and Engineering, 343.

[22] Cagli, E., Dumas, C. & Prouff, E. Convolutional neural networks with data augmentation against jitter-based
countermeasures - profiling attacks without pre-processing. In Fischer, W. & Homma, N (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Science. pp. 45–68. Springer.

[23] Maghrebi, H., Portigliatti, T., & Prouff, E. Breaking cryptographic implementations using deep learning
techniques. In Carlet, C. M., Hasan, A. & Saraswat, V. (eds.) Security, Privacy, and Applied Cryptography En-
gineering - 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings,
volume 10076 of Lecture Notes in Computer Science. pp. 3–26. Springer.

[24] Standaert, F-X., Koeune, F. & Schindler, W. (2009) How to Compare Profiled Side-Channel Attacks? In
Abdalla M., Pointcheval D., Fouque PA. & Vergnaud D. (eds.)Applied Cryptography and Network Security.
ACNS 2009. Lecture Notes in Computer Science, vol 5536 pp. 485-498. Springer, Berlin, Heidelberg.

[25] Oswald E., Mangard S., Pramstaller N., Rijmen V. (2005) A Side-Channel Analysis Resistant Description
of the AES S-Box. In: Gilbert H., Handschuh H. (eds) Fast Software Encryption. FSE 2005. Lecture Notes in
Computer Science, vol 3557. Springer, Berlin, Heidelberg

[26] Brier E., Clavier C., Olivier F. (2004) Correlation Power Analysis with a Leakage Model. In: Joye M.,
Quisquater JJ. (eds) Cryptographic Hardware and Embedded Systems - CHES 2004. CHES 2004. Lecture Notes
in Computer Science, vol 3156. Springer, Berlin, Heidelberg

[27] Fan G., Zhou Y., Zhang H., Feng D. (2015) How to Choose Interesting Points for Template Attacks More
Effectively?. In: Yung M., Zhu L., Yang Y. (eds) Trusted Systems. INTRUST 2014. Lecture Notes in Computer
Science, vol 9473. Springer, Cham

[28] Schindler W., Lemke K., Paar C. (2005) A Stochastic Model for Differential Side Channel Cryptanalysis. In:
Rao J.R., Sunar B. (eds) Cryptographic Hardware and Embedded Systems – CHES 2005. CHES 2005. Lecture
Notes in Computer Science, vol 3659. Springer, Berlin, Heidelberg

[29] Kocher P., Jaffe J., Jun B. (1999) Differential Power Analysis. In: Wiener M. (eds) Advances in Cryptology
— CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer Science, vol 1666. Springer, Berlin, Heidelberg

9

	Introduction
	Background
	Related work
	Dataset and Features
	Description
	Dimensionality Reduction

	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work

