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Abstract

Waste production and management pose a large ecological and existential risk to
our planet. The use of artificial intelligence (AI) to develop an accurate, low-cost,
and lightweight waste classifier garners significant environmental and economic
benefits. However, most of the AI research in this area have identified data limita-
tion as a key challenge. In turn, this paper explores to augment the strength of these
existing solutions by using Generative Adversarial Network (GAN) to synthesize
training data, in order to better capture recyclable waste. A robust data-set will
ultimately improve the accuracy and recall of existing deep classifiers, and warrant
further research and investment in this area.

1 Introduction

One of the biggest environmental challenges currently threatening our ecosystem is the colossal
amount of waste production and its management. In 2017, the EPA estimated total annual municipal-
solid-waste (MSW) generation was 267.8 million tons in the United States. Of the recyclable waste
(70% of MSW), only 36% was properly recycled [1]. The success or failure of a recycling program is
driven primarily by two stages of the recycling life cycle: collection, and processing.

Collection and Processing
While single-stream recycling models (dump everything into one bin) can help reduce the burden
to the consumer, additional costs are often passed downstream in the form of capital equipment
expenditures, increased manual labor, and increased contamination at the materials recovery facilities
(MRFs). These facilities typically use a series of filters for well-defined objects and require manual
sorting for the rest of the waste stream. Contamination in a recyclable stream of materials can be as
high as 50% [9]. Some recent studies indicate that these impacts often far outweigh the benefits of
convenience brought by single-stream models, with costs being as much as 28.5% higher than in a
multi-stream model (where the consumer is responsible for sorting) [8].

1.1 Problem Statement and Approach

The use of artificial intelligence (AI) to develop an accurate, low-cost, and lightweight waste classifier
clearly can garner significant environmental and economic benefits. Many existing AI solutions suffer
from limited, highly-controlled datasets and a lack of entropy in training data (see Related Work).
Since waste can come in various forms, orientations, lighting conditions, etc, our objective is to
augment existing deep classification solutions for recyclable waste by leveraging deep convolutional
generative adversarial networks (DCGANs) to synthesize training data of waste items. We evaluate
the GAN by comparing the performance of a baseline classification architecture (e.g. trashnet [11])
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with standard, real-world, training data and compare its performance when trained with a mix of
real-world training data and synthesized training data generated by our trained DCGAN model.

2 Related Work

The problem of waste classification is fairly novel and subsequently understudied task. In our
literature survey, we found the work done by Yang and Thung [11] to be the most relevant to our task.
They have used a CNN based on AlexNet architecture to classify waste images into six categories
– glass, paper, cardboard, plastic, metal and trash. However, they were unable to achieve good
results and attributed the poor model performance to scarcity of data. This was a useful starting
point for defining the direction of our approach. Another relevant work on waste classification by
some researchers in Turkey [3] showed significant improvement over the baseline trashnet, achieving
75% - 90% accuracy. However, their best performing models came at a cost of super complex
architectures with more than 100 layers, not suitable for deployment in real-time applications. Since
our approach is focused on improving the entropy in the limited available training data for improving
the classification results, we next directed our research towards some of the literature work focused
on using data synthesis approach for improving classifier results. We found some relevant work by
a team of Stanford’s Deep Learning Class employing a fast R-CNN for waste object detection and
classification, comparing a baseline model trained on trashnet’s dataset, with GAN-generated collage
waste images to augment the trashnet data [7]. Although the team’s objective was object detection,
the GAN-generated collage images did indeed show improvement to their Precision, Recall, and
F1-Score, although their overall loss did increase. It is also unclear whether these measures were
corroborated on training, or validation data; indeed, the team was not able to test their model on real
data. We also found some interesting work [2] [4] where GANs were used for data augmentation and
synthesis for improving results in low-data regime applications like medical imaging [5].

3 Dataset and Features

We leveraged the trashnet project for training data and as a baseline CNN for evaluating the success
of our synthetic recyclable waste training images generated by the DCGAN implementation. The
trashnet dataset contains six classes: glass, paper, cardboard, plastic, metal, and trash. There are 2527
images in total; the distribution of these training images is seen below:

Category Count

Glass 501
Paper 594

Cardboard 403
Plastic 482
Metal 410
Trash 137

Figure 1: Trashnet Recyclable Waste Distribution

As the Github repository for trashnet explains, the pictures were taken by placing the object on a
white posterboard and using sunlight and/or room lighting. The pictures have been scaled down
to 512 x 384 for consistency. The pictures themselves were taken on one of the following devices:
Apple iPhone 7 Plus, Apple iPhone 5S, or Apple iPhone SE.

Figure 2: Trashnet Recyclable Waste (glass, paper, cardboard, plastic, metal, trash)

In order to deal with the small dataset size and the non-uniform distribution of waste classes, we
perform custom data synthesis on the labeled data to aid in training the DCGAN. Inspired by ideas
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from an article on GAN hacks [10], we have created a data synthesis function, that takes transforms
as arguments, and augments the training data by applying a series of composite transformations.
Examples of transforms include horizontal/vertical flips, rotations, and color jitter. For each respective
recyclable waste category, this can increase our underlying training dataset between 3-5 times
(depending on the number of transforms applied).

4 Experiments and Results

We conducted several experiments to both gain an intuition on how the DCGAN works, as well as
improve the generator and discriminator loss.

Running the baseline DCGAN model, we observed shortcomings in the Generator, and, reciprocally,
the strength of the Discriminator. So, the primary focus of our experiments was to strengthen the
Generator to make it better at fooling the Discriminator.

Figure 3: Generator Mode Architecture Changes: Baseline DCGAN vs RecycleNet DCGAN

Note that we first modified the model from the baseline inspired by Pytorch’s DCGAN tutorial [6].
First, we changed the real/fake hard labels in our Discriminator pipeline to soft labels as well as
added some noise by randomly flipping real/fake labels which helped in boosting the Generator.
After doing some literature study on GAN activation functions, we found recommendations for using
LeakyReLU for both Generator and Discriminator. Indeed, switching Generator activation functions
to LeakyReLU showed some improvements.

The more substantive experiments dealt with three hyperparameters: number of network layers, the
number of channels in each layer, and the effect of using different deconvolution filter kernels.

The baseline DCGAN Generator (5-layer) network has decreasing number of channels (step : 2) in
each layer i.e.: 512→256→128→64→3. Changing the architecture to use large number of channels
in the initial layers i.e.: 512→512→512→128→3 helped the network learn more features and showed
improvements in the Generator output.
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Figure 4: RecycleNet DCGAN Model

Next, we tried increasing number of layers by introducing 3x3 deconvolution filters (k: 3x3, s:1, p:1)
in the Generator network. We tried multiple permutations and combinations like introducing 3x3
layer at the start, alternating 3x3 and 4x4 filter layers throughout the network and adding 3x3 layers
at the end.

Based on the experiments, we noticed significant improvements on adding 3x3 deconvolution layers
only at the later part of the network compared to all other combinations. The results matched our
following intuitions – a 3x3 deconvolution layer at the start of Generator network does not help
because the initial layers is still learning features and outputs input noise dominant, but an additional
3x3 layer at the end provides better results because at higher layers, the network is learning complex
features and the output is close to the generated image.

Figure 5: GAN Results: Baseline DCGAN vs RecycleNet DCGAN

From Figure 5, we observe that the 3x3 deconvolution kernel helps the layer map learned features
into closer neighborhood as opposed to larger neighborhood (4x4 kernel), resulting in much sharper
images and better Generator output image quality. As we can see there are some of the images are
repeated in the grid of generated image. We suspect this is just random sampling issue but there
is a possibility of GAN mode collapse here. This needs to be further investigated and can be an
interesting topic for future work.

Alternating 4x4 and 3x3 layer throughout resulted in too deep network and problem of vanishing
gradient.

Based on the above experimental results and learning, we finalized on 6-layer generator architecture
(RecycleNet DCGAN) with large number of channels at the start, an additional 3x3 deconvolution
fiter at the end and leakyReLU activation functions.

Once the network architecture was finalized, we let the RecycleNet DCGAN train for longer iterations
by using a manual threshold (based on empirical evidence) to help control when the DCGAN was
sufficiently trained and could begin generating synthetic data for a given waste classification class. In
total, we generated 500 synthetic metal class images to supplement the trashnet training data, in an
effort to boost the validation and test accuracy of trashnet’s worst-performing classification class. The
synthesized data was then indexed into the trashnet training dataset and evaluated against trashnet’s
baseline performance on the train/validation/test sets. These results are shown below:
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Figure 6: Loss Plot: Baseline DCGAN vs RecycleNet DCGAN

Predicted Class

Trashnet Baseline Synthetic Metal

G Pa C Pl M T G Pa C Pl M T
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G 50 6 4 14 3 5 60.976% 48 2 2 12 15 3 58.537%

Pa 9 85 2 5 6 1 78.704% 8 73 2 5 19 1 67.593%

C 1 3 56 5 3 2 80.000% 3 1 54 3 8 1 77.143%

Pl 9 7 5 49 4 0 66.216% 13 3 5 42 9 2 56.757%

M 9 7 6 5 37 4 54.412% 11 5 2 0 48 2 70.588%

T 10 1 1 3 2 12 41.379% 12 0 1 2 4 10 34.483%

Figure 7: Trashnet Confusion Matrix

From Figure 7, we see that supplementing the training data with the DCGAN synthetic metal waste
images helped boost the accuracy of metal classification by 16%. This did, however, have the side
effect of decreasing accuracy among all other classes of recyclable waste, with the largest decreases
in accuracy occurring in the "paper" and "plastic" classification tasks, respectively. We postulate
that this is a result of the synthetic metal data used in this exercise not being orthogonal-enough to
the structural appearance of paper (e.g. crumpled, in a ball, in a pile, etc.), nor orthogonal-enough
to the "shine" present in some plastic images. By supplementing the other classes with accurate
synthetic data, as well as updating the RecycleGAN’s loss function to perhaps take into account
relative dissimilarity to other generated waste images, we think similar performance improvements
are achievable among the other classes.

5 Conclusion and Future Work

In this paper, we tried to explore how classification models can be improved for applications where
data limitations were identified as key challenge with the help of Generative Adversarial Networks. We
targeted the most under-performing class (metal) and observed significant boost in the classification
results by feeding in data generated from our RecycleNet DCGAN model. Based on our preliminary
results achieved thus far, we see several key avenues for future work. Firstly, we would like to enrich
our dataset for all classes using GAN and observe the implications on the classifier results. Next, we
would like to experiment with some of the state-of-the-art pre-trained multi-class classification models
like ResNet, MobileNet and use GAN synthesized data to train these models using transfer learning
approach and evaluate the results. Also, we would like to explore several DCGAN architectures and
GAN transfer learning approaches. We envision end use-case of our classifier model to be deployed
on a mobile or embedded platform once we achieve good real-time classification performance and
generalizability.
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6 Contributions

All team members contributed equally to the direction of the project through weekly meetings and
frequent check-ins. VS worked on dataloader section, hyperparamter search, running experiments
and final project video. CT laid the foundational framework for the project, got the baseline trashnet
up and running, performed hyperperparameter search, tuning and served as our AWS master. NP
worked on implementing baseline model, final model architecture changes, hyperparameter tuning
and running experiments. All the team members contributed equally to the result/error analysis,
milestone/project reports, slides and the codebase. Our sincere thanks to our project mentor Shahab
Mousavi for all the the support and guidance throughout the project. We thoroughly enjoyed our
weekly discussions with him.
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Appendices
A Fake-Real Comparisons

As we can see below, the Milestone 1 fake images had less defined features and had fewer orientations,
making them less believable as images of metal trash.

Milestone 1 GAN Images

Milestone 2 GAN Images
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B 2 x 2 Deconv Filter Results

The baseline DCGAN uses 4x4 deconvolution filter kernel with stride of 2 and pad of 1. Switching to
a 2x2 deconvolution filter kernel resulted in a drop in the GAN performance. As we can see below,
the fake images (when the model had a 2x2 deconvolution filter) were extremely noisy, without many
distinguishable features to the eye, which the plotted loss corroborates with the high Generator loss.

2x2 Deconv Filter Images

2x2 Deconv Filter GAN Loss
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C Reduced Input Dataset

When feeding training data into the GAN architecture, we initially apply several transforms, including
rotations, flips, crops, etc. Applying these transformations sequentially increases our training dataset
5 fold, and our training time skyrockets to nearly 36 hours. Thus, we attempted to significantly reduce
the transforms applied in this experiment to 2, with sub par qualitative results as seen below.

Reduced Input Dataset: Real-Fake Comparison

9


	Introduction
	Problem Statement and Approach

	Related Work
	Dataset and Features
	Experiments and Results
	Conclusion and Future Work
	Contributions
	Appendices
	Fake-Real Comparisons
	2 x 2 Deconv Filter Results
	Reduced Input Dataset

