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Abstract

Developing prescription therapeutic drugs is an immensely expensive process,
costing an average of $2.6Bn.[1] Drug names must be attractive to market these
products and recoup the costs of R&D expenditures.
At the same time, drug naming is a matter of public health, and is heavily regulated,
requiring government agency approval. Medical error, including drug name and
dose mistakes, is the third leading cause of death in the U.S. after heart disease and
cancer[2], and errors in prescribing, dispensing, and taking medications results in
1.5 million Americans sickened, injured, or killed each year.[3] As a result, “name
safety" is a chief priority.
It is essential to develop drug names which are unique and do not evoke associa-
tions with other substances to avoid scenarios in which the wrong drug could be
consumed. Due to the high stakes involved in drug naming, specialized “name
engineering" creative agencies are employed to develop brand names which are
both appealing in the marketplace and highly unique.
To facilitate the creation of novel drug names, a LSTM RNN has been developed
and employed to randomly generate unique drug names, potentially easing the
expensive process of naming drugs.

1 Overview

Text processing, such as name generation, is inherently a time-sequence process, best handled by
recurrent neural networks (RNNs). To enable drug brand name generation, a long short-term memory
(LSTM) RNN neural network was used.

Recognizing that existing drugs already follow the guidelines that would be required of new drug
names, it was determined that their names would serve as a suitable template by which new names
could be created. A list of existing drug names was compiled and fed into the LSTM model for
parameter training, and then the model was deployed to create randomly-generated novel names.

2 Dataset

To create a database of existing drug names, data from the NIH[4] was manually compiled and
curated into a list of 2,805 brand names. Before feeding the drug names into the neural network,
they were processed into a format amenable to matrix mathematics. To do this, each character of
each name was converted into a one-hot vector representation wherein the position within the vector
representing the character’s position in the alphabet was set to 1, while all other values were 0.
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3 LSTM Recurrent Neural Network Model

To create a model that could accurately predict drug names, a LSTM RNN model was implemented
as illustrated in Figure 1. The model takes an input character sequence x and produces an output
character sequence ŷ (or, more properly, a character probability sequence) using a combination of
weights (Waa, Wax, and Wya) and biases (b and by), and activation functions (tanh and softmax).

Generally speaking, neural networks create a mapping between x and ŷ, and by comparison of ŷ with
a “ground truth" sequence y the model can be trained to produce an accurate mapping. In this case,
the intended mapping is a simple y = x, so that the LSTM can be trained to predict the drug name
that is being fed into it.

As shown in Figure 1(a), the structure of the model is recursive, in that only one neural network cell
is used at a time, processing a single character x〈t〉 of the input sequence to produce a single character
ŷ〈t〉 of the output sequence. To carry information about previous characters, the cell also produces
information stored in a “hidden state" vector a〈t〉, which is generated at each timestep and used for
the next letter.

(a) Recursive Architecture (b) Unwrapped Loop for Illustration

Figure 1: LSTM RNN Architecture

To illustrate the process, Figure 1(b) shows the recursive loop unwrapped into three representative
timesteps. The internal state is initialized to an initial value a〈0〉 (an arbitrary but consistent vector of
zeros), and then the sequence proceeds.

The first letter of the input sequence x〈1〉 is multiplied by weight matrix Wax and summed with
the bias vector b and the product of the internal state a〈0〉 and weight matrix Waa, and the result is
fed into a tanh activation function. The choice of a tanh activation function is useful for its easily
differentiable behavior, its output saturation characteristic, and its odd symmetry.

Activation by the tanh function produces the hidden state vector a〈1〉, ready to be used in the next
timestep. This value is also used to produce the first character of the output ŷ〈1〉, by first multiplying
by a weight matrix Wya, adding bias vector by , and activating with a softmax function (where for a
vector a, softmax (a) = ea−max(a)∑

ea−max(a) ). The softmax activation function is useful because it takes an
input vector of positive or negative values, and outputs a vector of values in the interval (0, 1) that
sum to 1, and can therefore be interpreted as a probability distribution describing the probability that
the output character will take on any particular value of the alphabet.

Having produced output letter ŷ〈1〉, the next value of the input sequence x〈2〉 and the previously
generated internal state a〈1〉 are fed into the network again to produce ŷ〈2〉 and a〈2〉. The loop repeats,
taking input x〈3〉 to produce ŷ〈3〉 and a〈3〉 and so on, until the entire input sequence is exhausted.

To reiterate, the input x〈t〉 is a one-hot vector whose size is equal to the alphabet length and whose
value represents the tth character of the input, while output ŷ〈t〉 is a probability distribution vector,
also of size equal to the alphabet length, which describes the probability that any particular letter will
exist for the tth output character.
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4 Name Generation

To use the LSTM RNN for name generation, its architecture is slightly modified as shown in Figure 2,
while keeping the neural network cell structure and parameters intact. In contrast with the structure
of Figure 1, which had as its input x a sequence of characters from an existing drug name, the name
generator of Figure 2 generates its input characters based on its own previous outputs.

Figure 2: LSTM RNN Name Generator

To start the generator, inputs x〈1〉 and a〈0〉 are initialized to zero and fed into the cell. For a
well-trained network, the resulting output ŷ〈1〉 is a vector probability distribution describing the
probabilities of any particular letter being the first character of a drug name. A letter is randomly
sampled from the alphabet based on the probabilities described by ŷ〈1〉, and it is selected to be the
first character, x〈2〉, of the generated name.

x〈2〉 and a〈1〉 are then fed into the cell as inputs, producing ŷ〈2〉 which describes the probabilities for
the second letter, and internal state a〈2〉. The second generated letter x〈3〉 is then sampled randomly
according to the ŷ〈2〉 probabilities, and the sequence repeats with x〈3〉 and a〈2〉 producing ŷ〈3〉, which
is sampled to become x〈4〉, and so forth.

At the end of the loop, which terminates whenever the sampled x〈Ts〉 represents an end-of-name
character, the values x〈2〉, x〈3〉, x〈4〉...x〈Ts〉 are constructed into a sequence of letters constituting
the randomly generated name. Although the letters are selected randomly, because they are selected
according to the probabilities of their existence following the previous sequence of letters, the
resulting name is a plausible drug name.

To avoid generating names of insufficient length, the sampler was modified slightly to prevent
generating end-of-name characters for names shorter than six letters in length.

5 Model Training and Hyperparameter Search

Before the LSTM could be used to generate drug names, it needed to be trained to have appropriate
values loaded into its weight matrices and bias vectors. Before training, the weight matrices were
initialized with random values and the bias vectors were initialized to zero-valued vectors. With
randomly initialized weights and biases, the name generator could only generate random gibberish,
as shown in Figure 3.

Figure 3: Random Gibberish Generated by Untrained LSTM Name Generator

To create a working model capable of generating plausible drug names, the LSTM’s weights and
biases were trained using the architecture of Figure 1 using the dataset of existing drug names as both
x and y.

The core principle of neural network training is to calculate the error, or loss, between the “ground
truth" output y and the network’s “predicted" output ŷ produced during forward-propagation; to
calculate the slope by which each parameter affects the error during back-propagation; and to update
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the parameters by a small amount in proportion to the error and the slope to descend the gradient and
reduce the error. Through repeated iterations of this process, the error is progressively minimized
until it reaches a satisfactory level.

The network was trained using stochastic gradient descent enacted upon one drug name at a time.
The loss was computed as the sum of the cross-entropy losses of each letter in the sequence between
y and ŷ. To promote stability in gradient descent, the loss was smoothed using a first-order difference
equation, L〈t〉 := 0.01L〈t〉 +0.99L〈t−1〉, and exploding gradient problems were avoided by clipping
gradients to within the range (−5, 5). Further, to prevent instability, a low learning rate was selected.

After LSTM RNN training, absurdly short drug names were generated, preventing the generation
of longer and more interesting sequences. Prior experience with the same model generating names
that had greater similarity to each other informed the notion that drug names had more diversity, and
therefore were more difficult to learn patterns for.

5.1 First Dead End

Observing that the increased pattern diversity was causing an over-representation of end-of-name
characters in the model’s ŷ probabilities, an approach was tried to incentivise the model to produce
longer names. In gradient descent, the parameter update rate was artificially increased (by a factor of
η = t1/4) for later characters, effectively increasing the penalty for predictions that were too short.

Although this approach improved the quality of generated names, it opened a Pandora’s box of
numerical instabilities which would manifest as generation of endless strings of letters. Balancing
the early-termination penalty η with learning rate α and number of iterations was delicate and
non-obvious, and adjusting other hyperparameters would throw the balance off in unpredictable
ways. Furthermore, deviating from the established, analytically satisfying path was unsettling, so this
change was reverted.

5.2 Second Dead End

A second approach was tried due to a fundamental misunderstanding of LSTMs. Recognizing that the
RNN lacked sufficient memory of previous letters, and hoping to improve its memory, the x〈t〉 vector
was modified into a vector with a 1 representing the current letter at step t, and a δ value representing
the previous letter at step t− 1 (where δ was varied between 0.1 and 0.9). Another attempt was made
wherein the vector also contained information from the t− 2 letter.

It was initially thought that such modifications would promote memory of letters from a more distant
history, but it instead seemed to do the opposite—the resulting generated names had long sequences
of repeated letters. This phenomenon was not understood, and the approach was quickly abandoned.

5.3 Final Training Approach

Taking a step back, it was realized that the internal state a〈t〉 contains not just information from the
letter at position t− 1 in the sequence, but also residual information from all previous letters, so a
sufficiently sophisticated LSTM model should be able to tolerate the pattern diversity of drug names.
As a result, it was decided to simply follow the original algorithm and adjust hyperparameters.

The key to storing state is the a〈t〉 vector, so more state can be stored by making it larger. It was
originally a 50-dimensional vector, which, while sufficient for names of low diversity, proved entirely
unsatisfactory for drug names; as its size was increased, the quality of the generated drug names
improved monotonically. Eventually, it was decided to make it a 2, 000-dimensional vector, which
was as large as the server would successfully execute without changing the code architecture.

Even with a low learning rate of α = 0.005, chosen to ensure numerical stability, the loss quickly
settled to an asymptote after several thousand iterations as shown in Figure 4. After reaching the
asymptote, the generated names did not seem to improve dramatically. As a result, only 10, 000
training iterations were deemed useful.
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Figure 4: Training Loss

6 Results

After training, the model was used to generate names as illustrated in Figure 5. With the exception
of short-name suppression in the name generator, no other strange hacks were required to generate
plausible drug names; all that was required was a sophisticated LSTM with a sufficiently large a〈t〉
hidden state vector and a sufficiently low learning rate for numerical stability.

Figure 5: Generated Drug Names. “Plausible" Names Highlighted

Although the generated names are, for the most part, believable as drug names, a substantial fraction
is not. By a manual count, per the author’s judgment, only about 40% of the generated names are
plausible. It is believed that a larger state vector, or a deeper network, could increase this fraction.

7 Conclusion and Future Directions

The result of this project is a LSTM RNN that generates novel drug names for future drugs, and could
be used gainfully to streamline the drug name creation process.

A larger a〈t〉 vector could result in generating a larger fraction of plausible names, as could a
deeper network; these were not explored in this work. That said, it is the author’s opinion that such
improvements would likely be of marginal practical benefit; recognizing that ultimately the objective
is to create unique names that are to some degree dissimilar to existing names, a more complex model
could result in the model gaining sufficient sophistication to over-fit the training data, resulting in
generated drug names that are too similar to existing drug names.

In practice, drug names are chosen based on their association with words that inspire emotions and
ideas which the drug manufacturer hopes to evoke for market appeal.[5] Also, to avoid confusion,
drug names must be dissimilar, both in pronunciation and in appearance, to existing drug names. As
a result, a more practical pursuit could be to develop a name pruner to eliminate unsatisfactory names
and present only those of the highest quality for manual review.

Conceptually, a name pruner could be implemented by first training a LSTM to recognize the degree of
similarity between words and word fragments with similar pronunciations and appearances, although
of different spellings. Then, the name pruner could be applied to eliminate generated names whose
similarity to existing drug names exceeds some threshold. Further, by comparison with words and
their synonyms that the manufacturer intends their drug to be associated with, the pruner could select
only names whose similarity exceeds some value.
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