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Abstract

Electroencephalography (EEG) enables researchers to non-invasively measure
semi-localized brain activity and correlate that activity with specific cognitive
functions. We investigate how deep learning models can be applied to the study of
attention and the extent to which electrophysiological biomarkers obtained from
EEG signals can be measured and used to classify a person’s state of attentiveness.
We determined that artificial neural networks are able to learn an individual’s EEG
characteristics well enough to perform binary classification tasks but struggle with
learning population-wide datasets. Conversely, more complex CNN and RNN
architectures are able to better process multi-subject data, but struggle with single-
subject data. We also determined that the frontal cortex, parietal lobe, and the
occipital lobe regions of the brain are most highly correlated with attention.

1 Introduction

Electroencephalography (EEG) is a non-invasive measurement technology to electrically record
brain activity. EEG measurements have high temporal resolution and variable (medium to low)
spatial resolution, depending on the density of the electrode net used. EEGs are well-suited to enable
researchers to study cognitive activity, including attention, given the ease with which they can obtain
large amounts of data from subjects. Our interests lie in applying different deep learning models
to EEG data in order to classify and predict the state of a subject’s attentiveness. Explicitly, the
inputs to our system are the recorded EEG time-series voltage data (which consists of one channel
for each electrode used) one second prior to some stimulus onset. The outputs of our neural networks
predict information about subjects’ attention levels, measured based on reaction time to stimuli, and
this output can be a classification of the relative speed of the reaction time or an analog prediction
of the subject’s exact reaction time. Our aims then extend to investigating which deep learning
networks are best suited to handle EEG data as well as analyzing the effects of restricting the number
of EEG recording channels to demonstrate the merit of extrapolating attention information from a
smaller form-factor, (import for reference-less EEG and function localization). An application of
these concepts of focus would be a miniature EEG patch placed on the head that would be able to
record and report subject attention levels.

2 Related work

Attention is a common research area linked to EEG, and studies have been conducted to analyze
several event-related potentials (ERPs, e.g. P1, N1, P3, etc.) to extrapolate subject attentiveness.
It is believed that the alpha (8-12 Hz) and theta (4-8 Hz) EEG frequency bands are most linked to
the allocation of attentional resources [1]]. There also exist hypotheses about the specific phase of
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EEG components affecting the development of an ERP component, thus affecting the corresponding
reaction time [2f]. As such, both time- and frequency-domain information could be considered as
inputs to our model.

Deep learning (DL) for EEG is most commonly associated with classification tasks, such as sleep
scoring or seizure/anomaly detection. Popular choices for architecture include CNNs and RNNss, to
leverage the inherent structure of EEG data, both spatially and temporally. Because of the peculiarities
of EEG processing, including low SNR and high inter-subject or inter-trial variability, pre-processing
is fairly common, and can include artifact removal (e.g. eye blinks), filtering, interpolation, and
feature extraction. However, raw EEG data is still commonly used for the input to the DL model.

There are few architectures typically chosen for DL using EEG data. Among previous DL EEG
studies, 53% employ CNNs or hybrid CNNs, and either directly input raw signals or spectral
information [3]]. Similarly, 18% of studies employ Deep Belief Networks and 10% use RNNs [3]].
It is also typical to choose between 3-5 convolutional layers or 1-2 LSTM layers [3]. In particular,
Alhagry et al. report 85% accuracy using two LSTM layers with dropout for an emotion recognition
dataset [4]. It is much less common to use GRUs or a combination of GRU and CNNs.

3 Dataset and Features

The dataset we used comes from an experiment in which EEG (electroencephalogram) signals were
recorded from different subjects during a simulated driving setup [5]]. Subjects spent an average of 90
minutes in a virtual reality environment and were instructed to keep a car centered in a specific lane
of the road. At random intervals, the car would begin to drift left or right, and the subject would need
to correct the car’s position to re-center it in its lane. The data was collected using a 32-channel EEG
sampled at 500 Hz, 16-bit resolution, with Ag/AgCl electrodes placed in a modified 10-20 system (2
reference channels - Figure[A.T) [6]. In addition to the raw EEG signals, the dataset also includes
labelled time indices for the drift events and corresponding correction responses. The experiment had
27 unique subjects and 62 total sessions. Fig. [A.2]depicts a visualization of the data.

The dataset is labelled with 4 different types of events: "Deviation onset left" (251), "Deviation
onset right" (252), "Response onset" (253), "Response offset" (254). These events respectively occur
13522, 13670, 27192 and 27192 times over a total of 93 hours of recordings. The reaction time of the
driver is also included in the dataset, and is defined as the time difference between deviation onset
and response onset. The large number of events in the dataset suggest an accurate general deep model
should be attainable (if biomarkers are common across subjects), but the limited number of events per
subject (on the order of several thousand each) indicate training individual models may be difficult.

The average median response time was 1.037 s across all drivers with a standard deviation of 0.478 s.
Histograms showing the reactions times for subjects 44 and 41 are depicted in Fig. [A.3]

We extract signal sequences of uniform time duration from immediately prior to the deviation onset
to feed into our models that dealt with the time-domain data. For some models, rather than utilizing
all data points from our 1-second EEG signal preceding stimulus onset, we preprocessed all such
signals to extract the relative band-powers within 5 frequency bands as compared to the whole signal,
with the intention of lowering the dimensionality of our input data for easier model learning. See
Appendix [B] for details, and[A.4]for a plotted example.

4 Methods

4.1 Time Domain

In our raw signal analysis, we use a combination of CNNs (convolutional neural networks), RNNs
(with GRU layers), and combined CNN-RNNs to process data. We combined CNNs and RNNs
because CNNs tend to uncover (in our case) temporal relationships (given the nature of our signals)
that RNNs can make use of. We also incorporated a spectrogram layer as part of our CNN architecture.
Spectrograms apply Fourier transforms using a rolling time window to data to generate a 2D plot of
frequency vs. time, and are used to analyze the frequency content of data in event detection problems
[7]. An example network using LSTMs for trigger word detection was given in the course lectures.
The 2D image generated by the spectrogram is well-suited for processing by a CNN.



We used these networks to perform both binary classification and continuous-value estimation. For
binary classification we used a binary cross-entropy loss function (Equation[T)) whereas for continuous-
value estimation we used a smooth L1 loss function (Equation[2]and [3)). Binary cross-entropy loss is
designed such that only one term of the equation is ever evaluated (given that y; is always either 0 or
1). If the evaluated term has diametrically opposed values for y; and g; the loss is high; otherwise,
the loss is almost negligible. Smooth L1 loss is a loss function that uses mean-squared error for a
narrow region of interest of the data and L1 loss (average of magnitude of errors) for outliers. This
was used because the nature of the response times is such that most are concentrated around 1s but
others extend in time up to 10+ seconds, and we are not concerned with accurately predicting these
long reaction times precisely.
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Our best performing model scheme is shown in Fig. [I] A GRU was used instead of an LSTM because
GRUs learn faster and we did not have enough data to train a complex LSTM model. Before choosing
this setup, we tried using LSTMs with various numbers of layers with and without convolutional
layers. This model was trained for regression on the response times, and was evaluated as a binary
classifier with respect to the median response time at test stage as shown in Fig. [A.3]
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Figure 1: Diagram of the Neural Network Model combining GRU and CNNs.

4.2 Frequency Domain

As previously described, periodograms were used to compute band powers for 5 bands from 0-30 Hz.
This serves as a reduction in dimensionality and a general frequency-domain representation of our
time-domain signal. These 5 data points were extracted for all 30 EEG channels and flattened into a
single 150-element (for 30 channels) input vector for a standard artificial neural network (ANN).

The ANN’s architecture consisted of an input layer, 2 hidden layers, and an output layer, with batch
normalization and ReL.U outputs applied at both hidden layers and dropout applied at the second
hidden layer. A sigmoid function was used to calculate the output, and binary cross entropy was used
for the loss function.

The ANN was trained on an individual subject’s data (subject 44) as well as the entire dataset. In
addition the ANN was trained separately for 6 clusters (A-F) of 4 electrodes each as seen in Figure
[A-T] This was performed to determine whether the bulk of "attention information” could be localized
to a specific region of the brain. Lastly, the ANN was also trained on differential cluster data in which
one electrode of the four became a "reference" and the signals from the other three were modified to
be the difference between those electrodes and the reference.

We evaluated all binary classification models using accuracy, precision, recall, and F1 score. We
evaluated the regression models using mean-squared error.



S Experiments/Results/Discussion

5.1 Time Domain

The time domain system was particularly designed for added complexity as our initial models failed
to reach high training accuracy even with extended periods of training. The spectrogram, repeated
convolutional layers, GRU and the repeated dense layer are incorporated for this purpose. The tanh
activation was preferred before the final dense layer (instead of a ReLU or other activation) because
the regression results tended towards higher values, and we chose to provide the network with an
activation that can yield negative values. The dropout layers were added to prevent overfitting to the
training set, due to the added complexity, and 0.2 dropout probability yielded the best regularization.
Batch normalization layers were used, and a GRU was preferred over an LSTM to improve the
network’s performance on limited data. Learning rate decay was used in training, starting from
« = 1072 and reducing the learning rate by a factor of 0.9 once the validation cost reached a plateau
for two consecutive epochs. The batch size was chosen as 64 samples to speed up training.

The hyperparameters are given in Table [T} results for classification are provided in Table[2] and the
confusion matrix is given in Table[3] Class 0 corresponds to response times shorter than the median
time, and Class 1 corresponds to longer responses times. We also report MSE for regression although
we use regression only to classify the level of attention. The results show that the model can predict

Learning Rate 107° Test Accuracy 0.674
Conv 1D Layer 1 Channel # 256 Precision 0.678
Conv 1D Layer 2 Channel # 256 Recall 0.677
Conv 1D Layer 3 Channel # 256 F1 Score 0.678
GRU Hidden Unit # 512 Regression MSE | 0.444
Optimizer Adam Training Accuracy | 0.809
Dropout Probability (Global) 0.2 Table 2: Time domain CNN+RNN results
Batch Size 64
Number of Epochs 300 True/Predicted | Class 0 | Class 1
Pre-onset time analyzed 1 second Class 0 1684 823
Table 1: Time domain CNN+RNN hyperparame- Class 1 8,28 1,737
ters Table 3: Confusion Matrix

the attention level of an individual from data before the event onset 35% better than the baseline of
0.5 (evenly split data). There is negligible bias towards either class.

5.2 Frequency Domain

The hyperparameters for the ANN were the learning rate, hidden units per layer, dropout probability,
number of training epochs, and optimizer function (stochastic gradient descent vs. Adam). A random
search for all hyperparameters was used to find the optimal ANN settings (that maximize classification
accuracy). Hidden units were maximized at 2000, the learning rate was between 0.1 and 1e-6, dropout
was between 0 and 0.9, and epochs were between 5 and 30. The number of layers was also varied,
but it was determined early on that 2 hidden layers was optimal, so it was not included in the random
search.

The results for the 4 different examined model use-cases are shown in Tables The highest
performing model for subject 44 had 1657 units in layer 1, 1574 in layer 2, a 0.67 dropout rate, a
learning rate of 2.2e-5, and 21 epochs. The results for this model are shown in the row labeled *All’
in Table[d] The accuracy baseline is 50% (classification categories are split by median), so this model
(which attained an accuracy of 77.7%) was relatively successful at learning a single subject’s attention
biomarkers (55% improvement). However, the highest performing cross-subject model attained an
accuracy of only 63.6%. This demonstrates that while frequency domain features may be unique to
individuals, they do not generalize well across subjects - the RNN and CNN models perform better
for multi-subject test sets.

With regards to clusters, the best performing cluster was A, corresponding to the frontal cortex. This
makes sense as the frontal cortex is hypothesized to be the site of attention and decision making
processes in the brain. Cluster D also performed well for cross-subject models; cluster D corresponds
to the occipital lobe, which is the site of vision processing in the body. Lastly, cluster C also



performed well in the cross-subject models; cluster C corresponds to the parietal lobe, another region
of the brain thought to be responsible for attention. While certain clusters performed better than
others, the differences between clusters are relatively small - this suggests attention may be more of a
whole-brain’ process than we initially assumed.

The differential cluster models performed nearly as well for subject 44 as the common reference
models, and just as well (and better in some cases) for the cross-subject models. This suggests that a
patch electrode system localized to only a single area of the brain could obtain useful measurements
even without a distant reference electrode. However, like the larger 30-channel model, both the
common reference and differential reference cluster models had better performance in the single-
subject case, and did not seem to generalize well across subjects. Again, this is likely due to
the nonstationary nature of EEG, and it is possible that our best models may not generalize well
across cognitive conditions, even among the same subject. There was insufficient data to draw
any conclusions in this regard, but the overall performance of the frequency-domain models were
satisfactory.

Cluster | Accuracy | Precision | Recall F1 —
Cluster | Accurac Precision | Recall F1
A 0.7511 0.7794 0.6943 | 0.7344 Y
A 0.7381 0.7903 | 0.6419 | 0.7084
B 0.7121 0.7927 0.5677 | 0.6616
B 0.7229 0.7440 | 0.6725 | 0.7064
C 0.7078 0.7611 0.5983 | 0.6699
C 0.7381 0.8333 0.5895 | 0.6905
D 0.7316 0.7838 | 0.6332 | 0.7005
D 0.7208 0.8086 | 0.5721 | 0.6701
E 0.7251 0.7656 | 0.6419 | 0.6983
E 0.7165 0.7634 | 0.6201 | 0.6843
F 0.6991 0.7557 | 0.5808 | 0.6568
F 0.7164 0.7356 | 0.5581 | 0.7002
All 0.7771 0.7944 | 0.7424 | 0.7675 Tl 5 F 3 T ANN electrode clust
Table 4: Frequency domain ANN electrode cluster results able . Frequency comain clectrode clustet

(subject 44, common reference) results (subject 44, differential reference)

Cluster | Accuracy | Precision | Recall Fl Cluster | Accuracy | Precision | Recall F1
A 0.5880 0.5991 0.5311 | F1:0.5631
A 0.5814 0.5950 0.5096 | 0.5490
B 0.5899 0.6153 0.4793 0.5388
B 0.5690 0.5758 0.5230 | 0.5482
C 0.5916 0.6156 0.4873 0.5440
C 0.5963 0.6087 0.5430 | 0.5736
D 0.6045 0.6211 0.5353 0.5750
D 0.6046 0.6239 0.5265 | 0.5711
E 0.5845 0.5955 0.5265 0.5589
E 0.5895 0.6058 0.5119 | 0.5549
F 0.5824 0.5986 0.4996 0.5447 F 05707 03366 04731 105768
All 0.6355 0.6567 0.5675 0.6089

Table 7: Frequency domain ANN electrode cluster

Table 6: Frequency domain ANN electrode cluster results results (all subjects, differential reference)

(all subjects, common reference)

When used for the attention classification task, the time domain model gives more accurate results
than the frequency domain model; however, the time domain model is complex and takes longer
to train repeatedly with different clusters, so the frequency domain model gives more insight on
the relevance of a subset of the EEG channels for the attention task. Both models suffered from
overfitting, likely due to the sparsity of data and the need to use complex models which created a
higher order function space.

6 Conclusion/Future Work

After experimentation with different model architectures, we achieved the best results using two
general models, taking in time-domain-based and frequency-domain-based inputs respectively. Our
models were able to predict reactions times, as a measure of attention, based on one second of data
prior to the stimulus onset with good performance. Our frequency-domain model worked especially
well for single-subject attention prediction, while our time-domain model was better at generalizing
attention across different subject data. In the future, we believe that improvements may be made upon
the input data time window, extending beyond one second before the deviation. Furthermore, our
ability to experiment with some model types were limited by the amount of data that was available,
One direction of interest is to collect higher-order data to classify attention, as opposed to simply
predicting a reaction time, in order to test the viability of models to analyze deeper facets of attention.



7 Contributions

e Tolga Celik: Implementation, tuning and testing of the time domain model

e Ziad Ali: EEG signal conditioning and processing, ANN implementation, frequency domain
processing, cluster models (equally split with Kevin)

e Kevin Chen: EEG signal conditioning and processing, ANN implementation, frequency
domain processing, cluster models (equally split with Ziad)
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A Appendix

B Appendix: PSD Calculation

The method for computing this referenced power spectral density (PSD) was by computing an
averaged periodogram over overlapping windows of the input time-domain data. [8] Welch’s method
allows for an estimation of the spectral content of an analyzed signal, and has the advantage of
reducing the effects of noise on the spectrum of the signal. The analysis is performed by applying a
window function (e.g. Hanning) to segments of the time-domain signal, computing the periodogram
of these windowed signals (i.e. taking a Fourier Transform of the signal’s autocorrelation), and then
averaging the resulting periodograms into a generalization of the signal’s power spectral density
[9]. The reason this methodology is more robust to noise is due to the overlapping nature of the
windowed segments taken, which after averaging compounds the effect of the window function’s
spectral emphasis on lower frequency content with its emphasis on the middle of the windowed
signal.

As an alternative to Welch’s method, we also computed PSDs using the multitaper method, which
employs orthogonal filters upon the signal of interest to cancel the effects of noise. After deriving



Figure A.1: Electrode map for 32-channel EEG. Electrodes used are colored yellow. Red circles
labeled A-F correspond to clusters A-F used for localization training.
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Figure A.2: 32 EEG signal waveforms representing 32 channels collected during a single experiment
from a participant. Colored lines represent onsets of events (stimulus, reaction onset, reaction offset).

power spectral densities with either method, these are then collapsed into the cognition bands of
interest. The 5 bands were: delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 12 Hz), beta (12 - 30 Hz),
and gamma (30 - 100 Hz) [10].



Figure A.3: Histogram of reaction times (time between deviation onset and response onset) for a)
subject 44 and b) subject 41 (frequency vs. time in seconds).
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Figure A.4: Side by side comparison of the EEG signals in different domains. The left figure denotes
the recorded time-domain data, while the right figure showcases the spectral content of this underlying
one second of data. As expected, most of the signal power lies from 0 to 30 Hz.
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Figure A.5: Binary classification of estimated response time data with respect to the median response
time.
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