Composing Creative Music Via Automatic Note
Sequence Generation

Jinho Chung (jinhoch) Euirim Choi (euirim) Mallika Khullar (kmallika)
Stanford University Stanford University Stanford University
jinhoch@stanford.edu euirim@stanford.edu kmallika@stanford.edu
Abstract

While natural language processing (NLP) in deep learning is well established in
recent years, the field of music generation still remains premature despite that
two fields share significant architectural similarities. Being inspired by the latest
NLP architectures such as LSTM, Transformer, and GRU, we build novel music
generation models that compose interesting musical sequences. Our systems that
utilize the Maestro Dataset can be used for various human-aided compositions.
We found through our experiments that our LSTM-model produced the most
natural and melodic music sequences, surprisingly beating out both the GRU and
transformer architectures.

1 Introduction

Music takes an important part of human culture from its inception. Different cultures at different
periods of time have various ways of generating music. For many modern music compositions, we
know the composers. For other musical works, especially from more than a hundred years ago, we do
not know who created them. We know, however, that all music was composed by humans. It is only
recently that we have attempted to build artificial intelligence systems that can generate music for us.
Following this new trend, we aim to build a novel note sequence generation model that, given a note
sequence primer, can creatively compose MIDI music sequences that, when played by synthesizers,
sound natural and enjoyable to the human ear.

We are interested in this because all of our project group members have extensive experience playing
musical instruments and sharer a love for music. We believe that this project gives us the opportunity
to pair our musical appreciation with our interest in deep learning.

2 Related Work

It is currently very difficult to generate musical audio directly using machine learning and neural
networks specifically due to challenges modeling long-term relationships that are common in musical
compositions directly from audio. The similar challenge was apparent in natural language processing.

However, the introduction of the Transformer architecture [[7] has revolutionized the field of natural
language processing. The transformer’s ability to remember long-term depedencies with the exclusive
help of self-attention, to a degree superior to prior architectures like LSTMs and in turn RNNs,
have proved to be quite effective at modeling the innate structure of human language and ensuring
longer-term coherence in model output.

It is evident that music shares many of the same properties as natural language, including long-
term coherence and repetition. As a result, several researchers have looked into using transformer
architectures to generate music given an input of notes, usually in the popular MIDI format. Music
has one key difference to natural language, however, with the relative difference of note properties

CS230: Deep Learning, Spring 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



like pitch and timing being more important than absolute values in many cases. While capturing and
using relative timing information via relative attention has been explored by some researchers [6], the
original implementations were very memory-inefficient, being quadradic in sequence length. This
made such implementations impractical for music composition datasets where long sequences were
the norm.

By simplifying matrix computations involved in relative attention calculation, the creators of Mu-
sicTransformer [2] were able to reduce the memory requirement to be linear in terms of sequence
length. This enabled them to observe dependencies in longer windows, resulting in greater coherence
in music sequence output, as shown by their state-of-the-art performance on the Piano-e-Competition
dataset.

Researchers from OpenAl later adopted the MusicTransfomer approach and built a system, known as
MuseNet [3]], that could generate musical output in particular styles and/or composers specified by
the user.

3 Dataset

We trained and tested our models on the MAESTRO dataset [[1] (MIDI and Audio Edited for
Synchronous TRacks and Organization). The dataset contains over 1,200 MIDI files (200 hours
of recordings, paired in audio and MIDI formats) accumulated from ten years of International
Piano-e-Competition—the repertoire consisting of classical piano pieces.

We used M.I.T.’s Music21 library to load and parse the MIDI files into a Music21 stream object—
through which we are able to extract features to feed our model. We observed the following points
about the dataset: (i) there are a total of 1,282 MIDI files, (ii) Music21 was able to parse information
about these files such as instruments, tracks, notes (octaves, pitch offset of each) and chords, (iii) A
total of 7.13 million notes are played in the entire dataset and most notes tend to have a very low
frequency of occurrence. The 5 most frequent <music21.note.Note> objects found played in the
collection are A3, A4, D4, D5 and B4. In our data preprocessing, we chose to drop the extremely less
frequently occuring notes (frequency < 10), (iv) Music21 also allowed us to identify the most common
note offset, with the most common interval between notes in the midi files being 0.5, (iv) The dataset
is clean and all the MIDI files contain purely monophonic melodies (single non-overlapping melody
played with a single instrument), which implies the need for minimal data cleaning as opposed to our
original 130,000 large dataset choice. (v) The compositions are primarily classical piano pieces, with
the three most frequent composers being Frédéric Chopin with 201 compositions, Franz Schubert
with 186, and Ludwig van Beethoven with 148.

4 Approach

4.1 Baseline

For our baseline, we used a Keras based LSTM model following the research of [4]], with an LSTM
neural net layer (512 nodes) dropout of 0.3, and activation layers (using ReLU as activation function
and then softmax). This was trained over 50 epochs with the Adam optimizer.

To improve from our baseline, we decided to pursue three different approaches simultaneously.

4.2 LSTM-based Model

Building on our LSTM baseline, we enriched our data by unpacking notes within each chord (through
Music21’s chord.normalOrder which returns the normal order of the Chord represented as a list of
integers) and adding those to our notes sequence. We also sped up our processes by introducing a
pickle dump of the dataset of notes and chords collected after parsing our MIDI files, which were
previously being computed through the Music21 library repeatedly. We also introduced a Keras
ModelCheckpoint as a callback. This helped in generating .hdf5 files for weights from the network
nodes from every epoch (named with epoch number and loss). In the music generation step, we were
directly able to load the weights from our last run epoch, which meant that we could stop the training
at any point of time, if satisfied with the loss value, and use the latest generated weights.



We also fine-tuned the LSTM to improve the baseline results by trying techniques such as representa-
tional optimisation. Instead of increasing the number of units, we made the network more complex;
we added two-staged LSTM layers, where the hidden sequence of the first LSTM was provided as
input to the second LSTM. We were aware that stacking LSTM layers might result in overfitting. To
combat overfitting, we decided to introduce additional Dropout of 0.3 with the softmax activation.

The baseline and initial iterations of LSTM models trained on smaller subsets of the data (only some
of the MIDI files from the 2011 collection of the MAESTRO dataset), faced the issue of degradation
of prediction after a few bars of music, predicting similar, often the same notes repeatedly. The
generated samples improved heavily as we increased the number of files we trained on, as well as the
epochs we trained over. We trained the network for 200 epochs, with each batch that is propagated
through the network containing 64 samples.

Input

LSTM
512

LSTM
512

LST™M
512

relu

Dense

Dropout 0.3

BatchNorm

BatchNorm

Dropout
0.3

Dense

softmax

Output

Figure 1: Network architecture for the LSTM Model

For prediction, we chose a randomised sequence from the input as a starting point for the prediction.
Finally, since we added chords processing, from the resultant prediction, we added a step to identify
chords (in which case we split up the Chord string into a list and created Music21’s Chord object by
feeding in the list of notes).

4.3 GRU-based Model

In an empirical study on GRU-based RNNs trained on polyphone sequential MIDI music, GRUs
were found to outperform LSTMs in efficiency and accuracy [3]], especially when long-distance
relationships are not important. For our GRU model, we used the same underlying dataprocessing
pipeline as we had set up for the LSTM. We trained the GRU-based network for 80 epochs, with each
batch that is propagated through the network containing 64 samples. One of the initial challenges we
faced in our attempt to generate music with GRU-based model was overfitting of the network to our
initially relatively small training dataset. We were able to solve this issue by adding a dropout rate of
0.3.

4.4 Transformer-based Model

Our transformer model is structured as follows. We encoded MIDI using a scheme that involved
binning MIDI events into 388 different so-called "note events." This binning was done using an
external library. The first 128 events correpond to note-on events, one for each of the 128 MIDI
pitches. There are also 128 note-off events as well as 100 time-shift events, which move forward time
to the next note event. Finally, the last 32 note events are velocity events that correspond to binned
MIDI velocities.



The encoding results in a sequence of numbers ranging from O to 387, mirroring an approach used
by the authors of MusicTransformer discussed previously. Each of these numbers is then one-hot
encoded into vectors. The result, after some matrix transformations, is passed into a transformer
model composed of an initial positional encoder, then a transformer encoder with 4 multi-attention
heads and 9 layers, each of which has a fully connected dimension size of 2048. Layer normalization
is also applied to the output of each layer. The output of the transformer encoder is then passed
through a linear layer and then passes through a softmax while computing the cross entropy loss.

The transformer model is structured to be a sequence to sequence model that aims to predict the next
element in the input sequence. It uses an Adam optimizer for training, with weights being initialized
between a narrow range (-0.1 to 0.1). Dropout with probability 0.3 is applied to every layer.

Sequences are currently generated using greedy search decoding with temperature (=1.05).

5 Results

5.1 LSTM-based Model

We trained our LSTM model for 200 epochs, with a batch size of 64 and obtained a perplexity of
5.419, suggesting our model fit the data very well. For reference, many state-of-the-art language
models have perplexity scores in the single digits. Qualitatively, the 100 note samples seem promising,
while a few of the 500 note samples did see some repetition towards the ends of the samples. A
randomised starting point yields very different results during prediction.

You can listen to a sample generated by our LSTM model here - http://bit.ly/cs230-sample.

5.2 Transformer-based Model

After training our model for 50 epochs with a learning rate of 1e-4, a batch size of 128, and a sequence
size of 96, we obtain a training set perplexity of 72.60, a dev set perplexity of 108.79, and a test
set perplexity of 66.579. The training and dev set divergence, which appears more starkly in our
loss/perplexity graphs, suggests some degree of overfitting.

Qualitatively, the output of the transformer is not good enough for human listening, even after 50
epochs. Notes are often repeated, which may be the result of poor model fitting as well as the
limitations of greedy search decoding. With the current architecture, we do not believe that training
for even more epochs will result in a better output.

5.3 GRU-based Model

We trained our GRU-based model for 80 epochs, with a batch size of 64 and obtained a perplexity
of 45.604. Qualitatively, according to peers who heard the samples, the 100 note samples do have
a machine-generated listening experience, and the LSTM model’s outputs sound more natural and
melodic.

You can listen to a sample generated by our GRU-based model here - https://bit.ly/2zeQJz]J.

6 Conclusion

In this project, we tried three approaches for composing creative music through note sequence
generation.

We found that music generation using a LSTM-based model needed many epochs to be able to
accurately predict next generative notes. When predicting with weights created during small epoch
cycles, the model tended to generate repetitive notes towards the end of the predicted sequence.
Training an LSTM-model with a deep, multi-layer architecture yielded high performance, but it took a
long time to train. We tried to offset this time by also training a faster and simpler GRU-based model.
Tuning the networks was harder than expected, however our initial results have been promising.

We found that a relatively basic transformer-based architecture is not easily adaptable for the task
of music sequence generation, at least one that is robust to hyperparameter tuning. Possibly partly


https://drive.google.com/file/d/1Vn9dqaGmtXiKk79IMxvLxw8If_kGdfrQ/view?usp=sharing
https://drive.google.com/file/d/1OTJybdRcrHgVnDOkJNN30R8-FnLwa-JR/view?usp=sharing

due to maximum likelihood decoding approach we tried, transformer-based models often produced
repetitive output containing many dissonant chords.

In the future, we would like to explore splitting the data into two channels (channel 1 giving the
melody, channel 2 providing the chords). This would be a step towards our proposed improvement to
the models: identifying more than one instrument in a stream and predicting sequences for each of
them. Increasing the size of our transformer model may also be worth trying to produce high-quality
music sequences.

7 Contributions

All authors contributed equally to this project. Specifically, Euirim Choi set up the underlying
infrastructure and project pipelines, and worked on the transformer model. Jinho Chung worked on
the literature review and research, AWS, the evaluation and a majority of the writing of the milestones
and project reports. Mallika Khullar set up the baseline model and worked on the LSTM and GRU
models.

8 Acknowledgements

We would like to express our special thanks to Jo Chuang, Andrew Ng and Kian Katanforoosh for
meaningful instruction that helped guide our research.

References

[1] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander
Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano music mod-
eling and generation with the MAESTRO dataset. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r11YRjCOF7.

[2] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer, 2018.

[3] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 2342-2350. IMLR.org, 2015.

[4] Mangal, Modak, Rahul, Joshi, and Poorva. Lstm based music generation system, Aug 2019.
URL https://arxiv.org/abs/1908.01080.

[5] Christine McLeavey Payne. Musenet, Mar 2020. URL https://openai.com/blog/
musenet/.

[6] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position represen-
tations. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018.
doi: 10.18653/v1/n18-2074. URL http://dx.doi.org/10.18653/v1/N18-2074.

[7]1 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.


https://openreview.net/forum?id=r1lYRjC9F7
https://arxiv.org/abs/1908.01080
https://openai.com/blog/musenet/
https://openai.com/blog/musenet/
http://dx.doi.org/10.18653/v1/N18-2074

	Introduction
	Related Work
	Dataset
	Approach
	Baseline
	LSTM-based Model
	GRU-based Model
	Transformer-based Model

	Results
	LSTM-based Model
	Transformer-based Model
	GRU-based Model

	Conclusion
	Contributions
	Acknowledgements

