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1. Motivation and prior approaches 

Surface defects on semiconductor wafers have various morphologies. Among these defects some of them are 

“killer defects” that have huge impact on the final yield of the device. Convolutional neural network (CNN) and 

CNN-based transfer learning have been used for defect classification in materials manufacturing [1,2,3]. More 

complex architectures such as hybrid CNN-LSTM [4,5] model is also tested. Here, we proposed to identify these 

killer defects during the inspection at early stage using CNN with the help of both generative adversarial network 

(GAN) for data augmentation and autoencoder (AE) for image noise reduction (Fig. 1b).  

 

2. Model description 

2.1 CNN model for classification  

CNN model: CONV2D →Relu →MAXPOOL →CONV2D →Relu →MAXPOOL → Flatten → fully connected 

layer with softmax cross entropy loss and L2 regularization 

2.2 GAN model for data augmentation  

GAN model: Auxiliary Classifier GAN (AC-GAN) [6] was used. It is similar to conditional GAN except the 

discriminator perform classification in addition to discriminating real and synthetic image (Fig.1c). Here, we are 

not enabling the classification capability of this model, i.e. only use this model for generating one class of image 

at a time. The loss function is binary cross entropy for both generator and discriminator (J(D) = -J(G)). Architecture 

of the model is shown in Fig. 2a-b. The generator transforms random noise input into 128x128x1 images, while 

discriminator generates feature vectors from input images for binary classification.  

 

 
 
Fig. 1 (a) Sample class distribution. C5 and C6 have GAN generated synthetic images added; noise are removed for C1 and 

C6 (b) Proposed data preprocessing flow for training a CNN model (c) AC-GAN model (d) Autoencoder (AE) model 
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2.3 AE model for image denoise  

Stacked autoencoder model [7] consists of an encoder and a decoder (Fig. 1d). Number of filters per layer first 

decreases with each subsequent layer in the encoder, and increases back in the decoder (Fig. 2c). The decoder is 

symmetric to the encoder in terms of layer structure. Finally, sigmoid activation function converts output to 0-1.   

 

 

 

 

 

 

 

Fig.2 (a) Generator consists of several convolution layers (CONV) follow by activation, batch normalization (BN) and up-

sampling. (b) Discriminator also contains series of CONV layers follow by activation and dropout. At the end, it has a fully-

connected layer with sigmoid function for binary classification.  (c) Stacked autoencoder with convolution layers (encoder) 

and transposed convolution layers (decoder). 

3. Dataset 

About 12k of images (resize to 128x128x1) are labeled. Most of them have well-defined defect shapes (Fig.1a). 

Apart from labeled data, 210 and 3000 synthetic images of C5 and C6 were added to the dataset respectively. 

Also,  in some of the experiments, C1 and C6 are replaced with denoised version of the images.  

4. Result 

4.1 GAN generated synthetic images  

The images on the left in Fig. 3 are few examples of original C6 samples in the dataset, these images are taken as 

an input to the discriminator together with generated images from the generator. After about 10000 iterations, the 

final synthetic images looks similar to the real images (Fig. 3). Here we trained the generator with different image 

sizes, namely 28x28x1, 64x64x1 and 128x128x1. The motivation is that the smaller the image size, the fewer 

parameters in the model to be trained and thus, faster training. After training, all the images are resized to 

128x128x1 (same as original images in the dataset). Note that the 28x28 images has much lower resolution and 

even resized it to 128x128, it still looks blur compared with the 64x64 and 128x128 images. The 128x128x1 

images are quite successful in the sense that it reproduces not only the defect shape (small, comet-like with short 

tail) but also the noisy background.  

Odena et al. [6] claimed that generating higher resolution images (by GAN) improves discriminability. To test 

this hypothesis, these generative images are fed to a pre-trained CNN network (our baseline network), refer to 

e3,e4 and e5 in Table1-3. The 128x128 images resized from 28x28 synthetic images has 0% accuracy (all of them 

are predicted as another class) while the 64x64 and 128x128 synthetic images achieved  ~80% accuracy suggesting 

high degree of similarity to the original images. 



The effect of kernel size to the GAN generated images is also evaluated (Fig. 4). The 3x3 filter reproduces the 

zigzag edges in the original images perfectly while a larger kernel size, 9x9 and 6x6 in the early stage of the model 

tend to make the boundary smoother. When doubling the number of filters in each convolution layer, the model 

failed to reduce loss to generate valid images.   

 
Fig.3  Original and synthetic images of C6. 28x28, 64x64 generated images are resized to 128x128.  

 

Fig.4  Original and synthetic images of C5. The effect of different kernel size in the convolution layer is shown.   

4.2 AE denoised images  

In this dataset, Some of the C1 in the training set have relatively weak signal and becomes discontinues. 

The classifier may not perform well when C6 is also having low signal-to-noise. The hypothesis is that 

if the model can learn the line feature from C1 with strong signal samples, it will be unlikely to classify 

C6 (a short comet-like shape) as C1. Here, we trained AE by fitting X (original image) to Y (adding 

random noise to original image), then applied this model on raw C1/C6 images. The outcome are LV0 

images in Fig. 5. Since the noise seems to be removed leaving some low intensity features in LV0, the 

features are boosted to LV1 and LV2 by manipulating pixel intensities.  

   

 

 

 

 

 

 

 

 

 

 

 

Fig.5  Original and AE denoised images. The intensity of the feature are boosted to different levels.     



4.3 CNN Classifier performance with data augmentation and denoised images 

The test conditions are summarized in Table 1. e0 is the baseline model (without any data augmentation). e1-2 

have synthetic data in both training and test set. e3-5 use pre-trained baseline model to test on the GAN generated 

images. e6 uses both real data and synthetic data to train the model and applies this model to only the real data in 

test set.  

The baseline model performed quite well except for C5 and C6. Adding GAN synthetic samples in both training 

and testing set improves the accuracy of C5 and C6 (Table 3). The average training and test accuracy are close, 

indicating no overfitting. In the real use-case, e6-2, with data augmentation in training set, the model performance 

of C5 increases by 3% (90.2% to 93.1%) and C6 increases by 4.5% (76% to 80.5%). It is worth noting that the 

size of augmentation also effects the classifier performance: C6 accuracy is only 27% and 15% when adding too 

little (300) or too much (10000) synthetic C6 images.    

Table1: Test conditions 

 

Table2: Sample distribution in training and testing set.  

 
 

 Table3: Accuracy of each Class for each testcase  

 

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

e0 231 209 102 108

e1 371 409 172 208

e2 371 409 172 208

e3 231 209 0 300

e4 231 209 0 300

e5 231 209 0 300

e6-1 441 509

e6-2 441 3209

e6-3 441 10209

e8

e9

e10

e11 441 3209

test case
# of training samples: # of testing samples: 

1991 453 3100 1515 876 985 243

231 209

1518 772 398

102 108

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

e0

e1

e2

e3

e4

e5

e6-1

e6-2

e6-3

e8

e9

e10

e11

add C5 and C6 images GAN generated images: 128x128 original test set

add C5 and C6 images GAN generated images: 128x128 original test set

replace C1 and C6 images with AE denoiced images-LV2 replace C1 and C6 images with AE denoiced images-LV2

replace C1 and C6 images with AE denoiced images-LV1 replace C1 and C6 images with AE denoiced images-LV1

replace C1 and C6 images with AE denoiced images-LV0 replace C1 and C6 images with AE denoiced images-LV0

add C5 and C6 images GAN generated images: 128x128; replace C1 and C6 images with 

AE denoiced images-LV1
original test set

original training set GAN generated images: 64x64 resized to 128x128

original training set GAN generated images: 128x128

add C5 and C6 images GAN generated images: 128x128 original test set

original training set GAN generated images: 28x28 resized to 128x128

add C5 and C6 images GAN generated images: 128x128 add C5 and C6 images GAN generated images: 128x128

baseline: original training set, without data augmentation baseline: original test set, without data augmentation 

add C5 and C6 images GAN generated images: 28x28 resized to 128x128 add C5 and C6 images GAN generated images: 28x28 resized to 128x128

test case
Training set Test set

test case
Training 

accuracy

Testing 

accuracy

average average C0 C1 C2 C3 C4 C5 C6

e0 0.984 0.975 0.989 0.975 0.991 0.957 0.992 0.902 0.760

e1 0.988 0.984 0.997 0.982 0.986 0.995 0.983 0.941 0.906

e2 0.977 0.97 0.992 0.986 0.983 0.982 0.889 0.898 0.941

e3 NA NA NA NA NA NA NA NA 0.000

e4 NA NA NA NA NA NA NA NA 0.800

e5 NA NA NA NA NA NA NA NA 0.790

e6-1 0.961 0.964 0.990 1.000 0.983 0.989 0.947 0.940 0.270

e6-2 0.989 0.978 0.989 0.979 0.989 0.990 0.937 0.931 0.805

e6-3 0.969 0.924 0.988 1.000 0.940 0.938 0.882 0.784 0.148

e8 0.99 0.985 0.99 0.98 0.99 0.985 0.965 0.925 0.944

e9 0.99 0.979 0.991 0.955 0.987 0.979 0.976 0.906 0.879

e10 0.99 0.988 0.997 0.995 0.993 0.974 0.972 0.953 1

e11 0.986 0.917 0.992 0.008 0.979 0.985 0.969 0.862 0.768

Testnig Accuracy



e8-e10 used both denoised C1/C6 images for both training and testing. The accuracy is higher than baseline model 

(e0) confirming our hypothesis that if the images in our samples all have high signal to noise ratio, i.e. can be 

clearly differentiated from the background, then the classification will not suffer from the noises in the images. 

However, if only the training set have denoised images, the classifier has poor performance on C1. It would be 

interesting to see what kind of features have been learned during each activation in this model to understand why 

it can not be applied to original dataset.  

5. Error analysis and future work  

The focus will be improving the C6 performance while maintaining the others. The source of error in the e6-2 

classifier is summarized as below (Table 4). AE does not further improve the accuracy as we wished.   

Also, it is worth trying a deeper CNN network (currently only use 2 convolution layers) and transfer learning if a 

deeper model trained on similar dataset is available. We have tried adding one more convolutional layer with  

more filters, but the result are quite similar to the baseline model.  

Table4: Accuracy of each Class for each testcase  

 

6. Conclusion  

The synthetic images from GAN are similar to the original images, confirmed not only visually but also through 

a baseline classifier. With the help of these GAN generated images in the training set, the classification accuracy 

of the class having small labeled data improves by 4.5%. AE successfully removed the background noise in the 

images from the training set. However, the model failed to recognize key features of the raw images in the test 

set.   
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