
3 DATASET AND FEATURES

CS230: Final Report Forecasting Walmart Retail Goods Unit Sales via Recurrent Neural Networks
Andy Jin, Jesse Doan, Jasmine Bayrooti SUNetID’s: andyjin, jdoan21, jasmine7

Abstract
Sales forecasting is important for businesses to gauge their product demand so that they can plan to restock appropriately in
advance depending on their estimated future sales. We focus on the dataset provided by Kaggle for the M5 sales forecasting
competition. In order to compute accurate predictions for product sales 28 days in advance, we experiment with various
statistical techniques and deep learning models to find an optimal approach for this problem. Overall, our results show
that LGBM, exponential smoothing, and the N-BEATS model are the most promising approaches for this challenge.

1 Introduction

1.1 Project Motivation
Sales is the driving force behind the success of businesses. It is critical for businesses to have a sense of expected sales so
that they can estimate their future demand, ensure they hire a sufficient number of employees, cover operational expenses,
and restock supplies in appropriate quantities. Inaccurate forecasts could lead to phenomena such as significant business
losses, such as high overhead costs when accumulating a surplus of products in times of low demand or missing profits
when there is a shortage of supplies when there is high demand. Thus, it is especially important for large retail stores like
Walmart to accurately plan in advance to keep stock of their customers’ needs, such as food, toilet paper, etc.

1.2 Problem Statement
In order to address this problem of achieving accurate sales forecasts, we are entering Kaggle’s M5 Competition on
forecasting the unit sales of Walmart retail goods. The task is to predict the sales volume (i.e. number of goods sold) for
each of 3,049 Walmart products, for each of 10 stores, over a validation period of 28 days. The products span 3 categories
(Hobbies, Household, Food) and 7 departments across 3 states (CA, TX, WI). Concretely, the input to our algorithm is
a sales volume time series for each product over the past 5 years. We use several flavors of a neural network to output
the predicted sales volume for each of the next 28 days.

2 Related Work
From a previous iteration of the contest (M4), Redd et al described a state-of-the-art Exponential Smoothing (ES)-RNN
model that scored well [10]. The model first employs a pre-processing layer that uses ES, followed by an LSTM layer
that updates the parameters of the Holts-Winter model for each time series. Concretely, the first stage of the model
performs deseasonalization and adaptive normalization by training seasonality and smoothing parameters for each time
series. The second step was an RNN (using LSTM cells) that predicts sales on the deseasonalized data. Finally, the
results from the ES and the RNN (stages 1 and 2) are averaged to reduce variance in results. Considering that this ap-
proach was successful in the M4 challenge, we hope to achieve good results when applying this technique to the M5 dataset.

Very recent work has shown N-BEATS (Neural Basis Expansion) to also be an effective alternative approach for the M4
competition. In particular, this network utilizes backward and forward residual links and a deep stack of fully-connected
layers, which improves the model accuracy by 3% over the past M4 winner. The model does not use time-series-specific
components, but rather relies on residual blocks for forecasting [9].

Recent work in audio signalling also indicates the potential of the new WaveNet model, developed by DeepMind for
audio synthesis. This model outperformed Google’s best text to speech and generates raw wave forms that mimic human
sound [8]. Not only is the WaveNet model state-of-the-art for audio generation, but it has also been shown to be promising
for similar forecasting tasks like predicting Uber demand in New York City [2] and financial time series forecasting [1].

3 Dataset and Features

3.1 Datasets
We use the three datasets provided by Kaggle for the M5 sales forecasting competition:

1



3.2 Exploratory Data Analysis (EDA) 4 METHODOLOGY

• sell_prices.csv (6, 841, 121× 4) — Records the price of the products sold per store and per date.

• calendar.csv (1, 969 × 14) — Contains information about the dates on which the products are sold. Includes
information for each date, such as event names, event types, day of the week, an ID to identify the year and the
week, and whether or not a state provides SNAP benefits on that day.

• sales_train_validation.csv (30, 490 × 1, 919) — Contains the historical daily unit sales data per product and
store for 1, 913 days (d_1 - d_1913). There are 10 unique stores and 3,049 unique items (making up the
30,490 rows). d_1 - d_1913 refers to the number of sales for that row item on the nth day for 1913 days. There
are three types of items: hobbies, household, and foods.

3.2 Exploratory Data Analysis (EDA)
The sales data come from 10 different stores across the United States: 4 in California, 3 in Texas, and 3 in Wisconsin.
The majority of sales came from items labeled foods (68.6%) while the rest came from items labeled hobbies (9.3%) and
household (22.0%). Within these item categories, there are 2 hobby-items departments, 2 household-items departments,
and 3 food-items departments (with one of the food departments making up 49.3% of the total sales data!). Figure 1(a)
(as well as Figure 6(a)) illustrate the distribution of item types across states [7].

(a) Comparison of State to Item Categories (b) Product Sales Over Time

Figure 1: Analyzing Trends in the Data

Comparing the sales of products from these three categories over time in Figure 1(b) illustrates the prevalence of
the food products. The relatively prominent separation between the three items suggests that we could explore dif-
ferent time series models for each category. We concretely consider one food item from the validation set with id
FOODS_3_090_CA_3_validation and merge its calendar data with real dates to obtain a depiction of its sales over time
shown in Figure 6(b) (in the appendix) which reveals that there are often long stretches of days without sales. This
influences our project, since we must account for periodic sparsity in the time series. An analysis of the trends for this
item’s sales with respect to days, weeks, and years using the calendar information is given below:

Figure 2: Trends in Item Sales

4 Methodology

4.1 Preprocessing
Before running our models, we performed pre-processing by (1) encoding calendar information as a series with item ids,
store ids, and event ids, (2) merging calendar and pricing data, (3) separating the data into train, validation, and

2



4.2 Baseline Models 4 METHODOLOGY

evaluation sets, (4) reshaping to expected submission formatting. Thus, we produced one dataframe encapsulating all of
the necessary information from the four provided csv files.

4.2 Baseline Models
We implemented two non-deep learning baseline models: simple average prediction and Light-GBM. For our first baseline,
we implemented a model that, for day t, simply predicted the average of the past 30 days sales (t − 30, . . . , t − 1). We
improved this simple model with an adaptation of a public Light-GBM (LGBM) based kernel that achieved reasonable
accuracy [5]. In addition to data pre-processing, we performed feature engineering to extract the following features:

• Generic identifiers such as item_id, department_id, store_id, sell_price, etc.

• Demand-related metrics such as the mean, standard deviation, maximum, and minimum demand over varying sliding
windows of time (namely, 7, 30, 60, 90, and 180 day frames). Notably, we use these aggregate metrics in lieu of the
raw sales across the 1, 913 training time steps to combat the aforementioned sparsity problem.

• Price-related metrics, such as shifts in price, mean, standard deviation, maximum, and minimum prices rolling over
the same time windows

• Time-related features such as the day of the week, whether or not it is the weekend, month, etc.

Figure 3: Three Folds for Validation

In total we generated 21,434,470 training samples and 853,720 testing samples for the LGBM model. We then trained
on 1.5-years worth of data (547 days) and validated on the following 28 days with three folds as illustrated in Figure 3,
where the blue bars correspond to the training period and orange bars correspond to validated periods. The validation
periods always come after the training.

4.3 LSTM Model
Long Short Term Memory (LSTM) models are kinds of recurrent neural networks that tend to perform well on sequential
and time series data. We assembled a simple encoder/decoder model (LSTM architecture in appendix). We used a
pretrained Keras callback model to save model checkpoints each time the model achieves greater performance, as measured
by our RMSSE metric, and log incremental tensorboard outputs. We trained the model with a batch size of 64, learning
rate of 10−3, Adam optimizer, hidden layer size of 32, and dropout probability of 0.2 for 25 epochs. We used a simple
20/80% validation-training split before fine tuning the model.

4.4 WaveNet Model
WaveNet is another powerful approach, which combines convolutional layers with audio signal processing methods and
has been shown to be promising for time series tasks, as discussed in the Related Work section. Like the LSTM model,
we used a pretrained WaveNet Keras callback model to save model checkpoints each time the model improves on the
validation set while logging incremental tensorboard outputs [3]. We trained this model with a batch size of 256, learning
rate of 3e-4 and Adam optimizer. For the convolutional layers of the model, we used 32 2x2 filters with causal padding as
well as dilation rates of 0, 2, 4, 8, ..., 28 for each layer respectively. We used dropout probability of 0.2 and trained for 25
epochs. Again, we used a simple 20/80% validation-training split before fine tuning the model while extracting the last
28 time steps as the training target. The full architecture of the WaveNet model is provided in the Appendix. It consists
of a series of Conv1D layers, followed by a Dense, Dropout, Dense, and Lambda layer.

4.5 N-BEATS Model
Neural Basis Expansion Analysis for interpretable Time Series forecasting (N-BEATS) is a novel deep interpretable
architecture which relies on residual blocks, a type of layer that not only feeds into the next layer but also directly
into layers that are some number of layers away from the initial layer. For M5, we adapted the original paper’s model

3



4.6 Exponential Smoothing 5 RESULTS AND DISCUSSION

architecture, which focuses on doubly residual stacks and is shown in the appendix [4]. In this architecture, there are
multiple stacks which lead to the model output or the global forecast. Within each stack, there is a stack of blocks
that contribute to the stack output or stack forecast. Furthermore, within each block, each of them contain several
fully-connected layers which outputs basis expansion coefficients for backward (denoted backcast) and forward (denoted
forecast). The backcasts and forecasts of each block feed into the subsequent blocks and the overall stack forecast. For our
implementation, we use an Adam optimizer with a learning rate of 10−3, hidden layer of size 1024 and theta dimensions
of 8 x 8.

4.6 Exponential Smoothing
We experimented with triple Exponential Smoothing (ES) or Holt-Winters to smooth the demand values for a given
product as a preprocessing step for our best performing prediction model, the LGBM baseline. As mentioned in the
Related Work section, ES has been shown to enhance performance as it captures the idea that the forecast of a next step
is approximately the forecast of the previous step adjusted by part of the previous error. Naturally, this has a smoothing
effect and its combination with the LSTM model for the M4 sales forecasting competition led to significant improvements
in forecasting accuracy.

Specifically, for a given series in the data frame, we aim to predict two future points while taking seasonality into
account. We break this down into the intercept l and slope m, which we aim to predict using the assumption that the
future direction of changes in the time series depends on previous weighted changes using the following formulas [6]:

lt = α ∗ (yt − st−L) + (1− α) ∗ (lt−1 + bt−1) st = γ ∗ (yt − lt) + (1− γ) ∗ st−L

bt = β ∗ (lt − lt−1) + (1 + β) ∗ bt−1 ŷt+m = lt +m ∗ bt + st−L+1+(m−1)modL

We apply this smoothing to the series for FOODS_3_634_WI_2_validation and pass this through the LGBM model.

5 Results and Discussion
The following table describes our models’ performances using the root mean squared scaled error (RMSSE), which is
Kaggle’s metric for results evaluation for this competition, and is chosen primarily because it is scale-independent and
optimizes for the mean (since we are predicting average demand).

Model Approx. Kaggle Ranking Test Set (Kaggle) RMSSE
Past 30-Day Average 25th Percentile 1.071

Light GBM 60th Percentile 0.697
RNN-LSTM 8th Percentile 1.761
WaveNet 8th Percentile 1.662
N-BEATS 22th Percentile 1.164

Overall, these results were not quite as we expected. Due to their greater complexity and representation power, we had
anticipated that the LSTM and WaveNet models would outperform our simpler baseline models on the test set, but they
actually achieved a worse score when submitted on Kaggle. Nevertheless, these models did achieve significantly lower
training errors (0.479 for RNN-LSTM and 0.483 for WaveNet), which suggests that they have greater representation power
but may be overfitting to the training set.

Figure 4: LSTM Prediction Over Entire Series

We investigated the LSTM’s performance further and found that the model seemed to be generating decent predictions
over the entire training set. This is illustrated by the prediction curve closely following the actual time series values with

4



6 CONCLUSION AND FUTURE WORK

some noise as shown in Figure 4. This confirms that our model is correctly learning and generating decent predictions,
though it may struggle with extreme demand values. We anticipate achieving better results with this LSTM model after
tuning the learning rate, hidden size, and other hyperparameters. Furthermore, considering the high performance of the
LGBM model, we hypothesize that perhaps passing in the features for the LGBM model could enhance the LSTM’s
performance.

For the WaveNet model, we attribute its high RMSSE score to the difference between the lower dimensional M5 training
dataset and the more unstructured and high dimensional audio signals. WaveNet is typically useful for different kinds
of data and, despite its successes for predicting Uber demand and financial time series forecasting, it is likely that this
architecture is not very well suited to our task.

The N-BEATS model performed the best of the deep learning models we tried. As described in the Related Work
and Methodology sections, N-BEATS achieved 3% greater accuracy than the ES-RNN model which won the M4 chal-
lenge. Thus, it is not surprising that this method performed better than the LSTM and WaveNet models.

Finally, we achieved good results with the triple ES approach on a given product series as shown in Figure 5 (a) as
the model values nicely smooth over the noisy time series data. Judging by this graph, the triple ES model is able to
successfully approximate the initial time series, capture daily seasonality, the general downward trend and even some
anomalies. Clearly the model reacts to many changes in the series structure but then tends to return to the normal values
and essentially "forget" the past. Thus, we concluded that this technique is promising as it enables anomaly detection
and smooths the data, so we decided to apply it to a series through our best model, the LGBM predictor. As shown in
Figure 5 (b), the predicted demand matches the actual demand fairly closely.

(a) Triple ES Applied to Product Series (b) ES+LGBM Applied to Product Series

Figure 5: Using ES over a product series and incorporating into the LGBM model

6 Conclusion and Future Work
As shown in the Results and Discussion section, after experimenting with simple averaging, LGBMs, feature engineering,
RNN-LSTMs, WaveNet and N-BEATS models, and exponential smoothing, we observe that the LGBM, exponential
smoothing, and N-BEATS are the most effective methods for predicting demand for products 28 days in advance. The
LGBM approach achieved the lowest RMSSE score of 0.697 and our results from the ES+LGBM model suggest that
such a combination would also perform quite well. Of the deep learning models, N-BEATS performed the best, likely
because of its specialization for time series data and focus on residual blocks to allow for series outputs to feed back in to
higher layers. Furthermore, we expect that the LSTM model would also generate good predictions (when properly tuned)
because of its long-term “memory” properties that serve a similar purpose.

For future work, we can construct a separate model for each time series at the location or product category aggrega-
tion level, training parameters separately. We would also like to apply the ES+LGBM approach to the entire training
set to see if we achieve better results when smoothing the demand values. If so, we would like to apply exponential
smoothing to our other models. We would also like to further investigate the relatively poor performance from the LSTM
model and try tuning the hyper-parameters and passing in the features used for the LGBM model. Additionally, we hope
to try an encoder-decoder approach for automatic feature engineering, which Wu et al deems promising for time series [11].

Overall, this project significantly improved our understanding of sequence models and working with time series data
and we are looking forward to exploring future possibilities with this work!

5



REFERENCES

7 Contributions
All three authors contributed equally to the project. Jesse worked on the code infrastructure and running the models,
Andy worked on LGBM feature generation and the N-BEATS model, and Jasmine worked on the exploratory data analysis
and exponential smoothing. All three authors contributed to model architecture development and tuning, result analysis,
and writing the reports.

8 Acknowledgements
We would like to thank Jo Chuang for his helpful suggestions and feedback during our meetings and mentorship throughout
this project. We are also grateful to the entire CS 230 teaching staff for a very fun and interesting quarter delving into
deep learning.

References
[1] Anastasia Borovykh, Sander Bohte, and Cornelis W. Oosterlee. “Conditional time series forecasting with convolu-

tional neural networks”. In: (2018). url: https://arxiv.org/pdf/1703.04691.pdf.

[2] Long Chen, Konstantinos Ampountolas, and Piyushimita (Vonu) Thakuriah. “Predicting Uber Demand in NYC
with Wavenet”. In: (2020). url: http://eprints.gla.ac.uk/199034/.

[3] James Colless. M5 - RNN/Wavenet/N-BEATS Approach. url: https://www.kaggle.com/jcolless/m5-rnn-
wavenet-n-beats-approach.

[4] Fabien. N-BEATS Basics. url: https://www.kaggle.com/mpware/n-beats-basics.

[5] harupy. M5 Baseline. url: https://www.kaggle.com/harupy/m5-baseline.

[6] Rodrigo de Lima Oliveira. Time Series Analysis - ES+SARIMAX+XGB+LGBM. url: https://www.
kaggle.com/rodrigolima82/time-series-analysis-es-sarimax-xgb-lgbm.

[7] Rob Mulla. M5 Forecasting - Starter Data Exploration. url: https://www.kaggle.com/robikscube/m5-
forecasting-starter-data-exploration.

[8] Aäron van den Oord et al. “WaveNet: A Generative Model for Raw Audio”. In: CoRR abs/1609.03499 (2016).
arXiv: 1609.03499. url: http://arxiv.org/abs/1609.03499.

[9] Boris N. Oreshkin et al. “N-BEATS: Neural basis expansion analysis for interpretable time series forecasting”. In:
(2020). url: https://openreview.net/forum?id=r1ecqn4YwB.

[10] Andrew Redd, Kaung Khin, and Aldo Marini. “Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm”.
In: CoRR abs/1907.03329 (2019). arXiv: 1907.03329. url: http://arxiv.org/abs/1907.03329.

[11] Neo Wu et al. Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case.
2020. arXiv: 2001.08317 [cs.LG].

6

https://arxiv.org/pdf/1703.04691.pdf
http://eprints.gla.ac.uk/199034/
https://www.kaggle.com/jcolless/m5-rnn-wavenet-n-beats-approach
https://www.kaggle.com/jcolless/m5-rnn-wavenet-n-beats-approach
https://www.kaggle.com/mpware/n-beats-basics
https://www.kaggle.com/harupy/m5-baseline
https://www.kaggle.com/rodrigolima82/time-series-analysis-es-sarimax-xgb-lgbm
https://www.kaggle.com/rodrigolima82/time-series-analysis-es-sarimax-xgb-lgbm
https://www.kaggle.com/robikscube/m5-forecasting-starter-data-exploration
https://www.kaggle.com/robikscube/m5-forecasting-starter-data-exploration
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://openreview.net/forum?id=r1ecqn4YwB
https://arxiv.org/abs/1907.03329
http://arxiv.org/abs/1907.03329
https://arxiv.org/abs/2001.08317


9 APPENDIX

9 Appendix

9.1 Supplementary Exploratory Data Analysis Figures

(a) Comparison of Item Category to
State

(b) Sales for a Given Product Over Time

Figure 6: More Analysis of Trends in the Data

9.2 Model Architectures

Figure 7: LSTM Model Architecture

7



9.2 Model Architectures 9 APPENDIX

Figure 8: WaveNet Model Architecture

8



9.2 Model Architectures 9 APPENDIX

Figure 9: N-BEATS Model Architecture

9


	Introduction
	Project Motivation
	Problem Statement

	Related Work
	Dataset and Features
	Datasets
	Exploratory Data Analysis (EDA)

	Methodology
	Preprocessing
	Baseline Models
	LSTM Model
	WaveNet Model
	N-BEATS Model
	Exponential Smoothing

	Results and Discussion
	Conclusion and Future Work
	Contributions
	Acknowledgements
	Appendix
	Supplementary Exploratory Data Analysis Figures
	Model Architectures


